
Projective Geometry and Homological Algebra

David Eisenbud?

We provide an introduction to many of the homological commands in Mac-
aulay 2 (modules, free resolutions, Ext and Tor. . . ) by means of examples
showing how to use homological tools to study projective varieties.

In this chapter we will illustrate how one can manipulate projective vari-
eties and sheaves, using the rich collection of tools Macaulay 2 provides. One
of our goals is to show how homological methods can be effective in solving
concrete geometric problems.

The first four sections can be read by anyone who knows about projective
varieties at the level of a first graduate course and knows the definitions of
Ext and Tor. The last section assumes that the reader is familiar with the
theory of curves and surfaces roughly at the level of the books of Hartshorne
[7] and Harris [6].

We will work with projective schemes over a field kk. Macaulay 2 can
work over any finite field of characteristic at most 32749, and also a variety
of fields in characteristic 0 (except for the primary decomposition commands,
which at this writing are still restricted to positive characteristics). Our main
interest is in geometry over an algebraically closed field of characteristic 0.
Nevertheless, it is most convenient to work over a large prime field. It is
known that the intermediate results in Gröbner basis computations (as in
the Euclidean Algorithm computations they generalize) often involve coeffi-
cients far larger than those in the input data, so that work in characteristic
zero essentially requires infinite precision arithmetic, a significant additional
overhead. If we work over a finite field where the scalars can be represented
in one machine word, we avoid this coefficient explosion. Experience with the
sort of computations we will be doing shows that working over Z/p, where
p is a moderately large prime, gives results identical to the results we would
get in characteristic 0. Of course one still has to be careful about the fact
that our fields are not algebraically closed, especially when using primary de-
composition. The largest prime p we can work with being 32749, we choose
the field Z/32749. The name of the Macaulay 2 constant representing the
integers is ZZ, and by analogy we will call our field kk:

i1 : kk = ZZ/32749

o1 = kk

o1 : QuotientRing

In Macaulay 2 we will represent projective space Pn by its homogeneous
coordinate ring ringPn = kk[x0, . . . , xn]. A projective scheme X in Pn may
? Supported by the NSF.
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be most conveniently represented, depending on the situation, by its homo-
geneous ideal idealX or its homogeneous coordinate ring, represented either
as a ring ringPn/idealX or as a module OX over ringPn. Coherent sheaves
on the projective space, or on its subvarieties, will be represented by finitely
generated graded modules over ringPn, using the Serre correspondence. For
example, the structure sheaf OX of the subvariety X would be represented
by the module ringPn^1/idealX; here ringPn^1 denotes the free module of
rank one over the ring ringPn.

1 The Twisted Cubic

As a first illustration, we give three constructions of the twisted cubic curve
in P3. We represent P3 by

i2 : ringP3 = kk[x_0..x_3]

o2 = ringP3

o2 : PolynomialRing

The twisted cubic is the image of the map P1 → P
3 sending a point with

homogeneous coordinates (s, t) to the point with homogeneous coordinates
(s3, s2t, st2, t3). We can compute its relations directly with

i3 : ringP1 = kk[s,t]

o3 = ringP1

o3 : PolynomialRing

i4 : cubicMap = map(ringP1,ringP3,{s^3, s^2*t, s*t^2, t^3})

3 2 2 3
o4 = map(ringP1,ringP3,{s , s t, s*t , t })

o4 : RingMap ringP1 <--- ringP3

i5 : idealCubic = kernel cubicMap

2 2
o5 = ideal (x - x x , x x - x x , x - x x )

2 1 3 1 2 0 3 1 0 2

o5 : Ideal of ringP3

We could also use Macaulay 2’s built-in facility, and say
i6 : idealCubic2 = monomialCurveIdeal(ringP3,{1,2,3})

2 2
o6 = ideal (x x - x x , x - x x , x - x x )

1 2 0 3 2 1 3 1 0 2

o6 : Ideal of ringP3
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which uses precisely the same method.
Of course we might remember that the ideal of the twisted cubic is gen-

erated by the 2× 2 minors of the matrix(
x0 x1 x2

x1 x2 x3

)
,

which we can realize with the commands
i7 : M = matrix{{x_0,x_1,x_2},{x_1,x_2,x_3}}

o7 = | x_0 x_1 x_2 |
| x_1 x_2 x_3 |

2 3
o7 : Matrix ringP3 <--- ringP3

i8 : idealCubic3 = minors(2, M)

2 2
o8 = ideal (- x + x x , - x x + x x , - x + x x )

1 0 2 1 2 0 3 2 1 3

o8 : Ideal of ringP3

We can get some useful information about the ideal idealCubic with
i9 : codim idealCubic

o9 = 2

i10 : degree idealCubic

o10 = 3

This shows that we do indeed have a cubic curve. Note that the command
i11 : dim idealCubic

o11 = 2

gives 2, not 1; it represents the dimension of the ideal in ringP3, the dimen-
sion of the affine cone over the curve.

We can easily assure ourselves that these ideals are the same. For example,
to see whether the ideal idealCubic is contained in the ideal of minors of M,
we can reduce the former modulo the latter, and see whether we get zero. The
reduction operator % takes two maps with the same target as its arguments,
so we must replace each ideal by a matrix whose entries generate it. This is
done by the function gens as in

i12 : gens idealCubic

o12 = | x_2^2-x_1x_3 x_1x_2-x_0x_3 x_1^2-x_0x_2 |

1 3
o12 : Matrix ringP3 <--- ringP3

Thus for one of the inclusions we check
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i13 : 0 == (gens idealCubic)%(gens idealCubic3)

o13 = true

Both inclusions can be checked automatically in this way with
i14 : idealCubic == idealCubic3

o14 = true

2 The Cotangent Bundle of P3

Many invariants of varieties are defined in terms of their tangent and cotan-
gent bundles. We identify a bundle with its sheaf of sections, which is locally
free. Any coherent locally free sheaf arises this way. (One can also regard a
bundle as a variety in its own right, but this view is used in algebraic geom-
etry more rarely.) In this section and the next we construct the cotangent
bundle ΩP3 of P3 and its restriction to the twisted cubic above.

Consulting Hartshorne [7, Theorem II.8.13], we find that the cotangent
bundle to Pn can be described by the cotangent sequence:

0 - ΩPn - OPn(−1)n+1 f- OPn - 0

where f is defined by the matrix of variables (x0, . . . , xn). We can translate
this description directly into the language of Macaulay 2, here in the case
n = 3:

i15 : f = vars ringP3

o15 = | x_0 x_1 x_2 x_3 |

1 4
o15 : Matrix ringP3 <--- ringP3

i16 : OmegaP3 = kernel f

o16 = image {1} | 0 0 0 -x_1 -x_2 -x_3 |
{1} | 0 -x_2 -x_3 x_0 0 0 |
{1} | -x_3 x_1 0 0 x_0 0 |
{1} | x_2 0 x_1 0 0 x_0 |

4
o16 : ringP3-module, submodule of ringP3

Note that the module which we specified as a kernel is now given as the image
of a matrix. We can recover this matrix with

i17 : g=generators OmegaP3

o17 = {1} | 0 0 0 -x_1 -x_2 -x_3 |
{1} | 0 -x_2 -x_3 x_0 0 0 |
{1} | -x_3 x_1 0 0 x_0 0 |
{1} | x_2 0 x_1 0 0 x_0 |

4 6
o17 : Matrix ringP3 <--- ringP3
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and we could correspondingly write
i18 : OmegaP3=image g

o18 = image {1} | 0 0 0 -x_1 -x_2 -x_3 |
{1} | 0 -x_2 -x_3 x_0 0 0 |
{1} | -x_3 x_1 0 0 x_0 0 |
{1} | x_2 0 x_1 0 0 x_0 |

4
o18 : ringP3-module, submodule of ringP3

An even more elementary way to give a module is by generators and relations,
and we can see this “free presentation” too with

i19 : presentation OmegaP3

o19 = {2} | x_1 0 0 x_0 |
{2} | x_3 x_0 0 0 |
{2} | -x_2 0 x_0 0 |
{2} | 0 x_2 x_3 0 |
{2} | 0 -x_1 0 x_3 |
{2} | 0 0 -x_1 -x_2 |

6 4
o19 : Matrix ringP3 <--- ringP3

The astute reader will have noticed that we have just been computing the
first few terms in the free resolution of the cokernel of the map of free modules
corresponding to f. We could see the whole resolution at once with

i20 : G = res coker f

1 4 6 4 1
o20 = ringP3 <-- ringP3 <-- ringP3 <-- ringP3 <-- ringP3 <-- 0

0 1 2 3 4 5

o20 : ChainComplex

and then see all the matrices in the resolution with
i21 : G.dd

1 4
o21 = 0 : ringP3 <----------------------- ringP3 : 1

| x_0 x_1 x_2 x_3 |

4 6
1 : ringP3 <----------------------------------------- ringP3 : 2

{1} | -x_1 -x_2 0 -x_3 0 0 |
{1} | x_0 0 -x_2 0 -x_3 0 |
{1} | 0 x_0 x_1 0 0 -x_3 |
{1} | 0 0 0 x_0 x_1 x_2 |

6 4
2 : ringP3 <------------------------------- ringP3 : 3

{2} | x_2 x_3 0 0 |
{2} | -x_1 0 x_3 0 |
{2} | x_0 0 0 x_3 |
{2} | 0 -x_1 -x_2 0 |
{2} | 0 x_0 0 -x_2 |
{2} | 0 0 x_0 x_1 |
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4 1
3 : ringP3 <---------------- ringP3 : 4

{3} | -x_3 |
{3} | x_2 |
{3} | -x_1 |
{3} | x_0 |

1
4 : ringP3 <----- 0 : 5

0

o21 : ChainComplexMap

or just one of them, say the second, with
i22 : G.dd_2

o22 = {1} | -x_1 -x_2 0 -x_3 0 0 |
{1} | x_0 0 -x_2 0 -x_3 0 |
{1} | 0 x_0 x_1 0 0 -x_3 |
{1} | 0 0 0 x_0 x_1 x_2 |

4 6
o22 : Matrix ringP3 <--- ringP3

Note that this matrix does not look exactly the same as the matrix produced
by computing the kernel of f. This is because when Macaulay 2 is asked to
compute a whole resolution, it does not do the “obvious” thing and compute
kernels over and over; it defaults to a more efficient algorithm, first proposed
by Frank Schreyer [10, Appendix].

Any graded map of free modules, such as a map in a graded free reso-
lution of a graded module, comes with some numerical data: the degrees of
the generators of the source and target free modules. We can extract this
information one module at a time with the command degrees, as in

i23 : degrees source G.dd_2

o23 = {{2}, {2}, {2}, {2}, {2}, {2}}

o23 : List

i24 : degrees target G.dd_2

o24 = {{1}, {1}, {1}, {1}}

o24 : List

Macaulay 2 has a more convenient mechanism for examining this numer-
ical data, which we take time out to explain. First, for the resolution just
computed, we can call

i25 : betti G

o25 = total: 1 4 6 4 1
0: 1 4 6 4 1

The diagram shows the degrees of the generators of each free module in the
resolution in coded form. To understand the code, it may be helpful to look
at a less symmetric example, say the free resolution of ringP3^1/I where I
is the ideal generated by the minors of the following 2× 4 matrix.
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i26 : m = matrix{{x_0^3, x_1^2, x_2,x_3},{x_1^3,x_2^2,x_3,0}}

o26 = | x_0^3 x_1^2 x_2 x_3 |
| x_1^3 x_2^2 x_3 0 |

2 4
o26 : Matrix ringP3 <--- ringP3

We do this with
i27 : I = minors(2,m)

5 3 2 3 3 3 2 3 2 2
o27 = ideal (- x + x x , - x x + x x , - x + x x , -x x , -x x , -x )

1 0 2 1 2 0 3 2 1 3 1 3 2 3 3

o27 : Ideal of ringP3

i28 : F = res(ringP3^1/I)

1 6 8 3
o28 = ringP3 <-- ringP3 <-- ringP3 <-- ringP3 <-- 0

0 1 2 3 4

o28 : ChainComplex

i29 : betti F

o29 = total: 1 6 8 3
0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 2 2 .
4: . 1 4 3

The resulting Betti diagram should be interpreted as follows. First, the
maps go from right to left, so the beginning of the resolution is on the left.
The given Betti diagram thus corresponds to an exact sequence of graded
free modules

F0
� F1

� F2
� F3

� 0.

The top row of the diagram, 1,6,8,3, shows the ranks of the free modules Fi in
the resolution. For example the 1 on the left means that F0 has rank 1 (and,
indeed, the module ringP3^1/I we are resolving is cyclic). The 6 shows that
the rank of F1 is 6, or equivalently that the ideal I is minimally generated by
6 elements—in this case the 6 =

(
4
2

)
minors of size 2 of the 2× 4 matrix m.

The first column of the diagram shows degrees. The successive columns
indicate how many generators of each degree occur in the successive Fi. The
free module F0 has a single generator in degree 0, and this is the signifi-
cance of the second column. Note that F1 could not have any generators of
degree less than or equal to zero, because the resolution is minimal! Thus
for compactness, the diagram is skewed: in each successive column the places
correspond to larger degrees. More precisely, a number a occurring opposite
the degree indication “i:” in the column corresponding to Fj signifies that
Fj has a generators in degree i + j. Thus for example the 1 in the third
column opposite the one on the left corresponds to a generator of degree 2



8 D. Eisenbud

in the free module F1; and altogether F1 has one generator of degree 2, two
generators of degree 3, two of degree 4 and one of degree 5.

Returning to the diagram
i30 : betti G

o30 = total: 1 4 6 4 1
0: 1 4 6 4 1

we see that the successive free modules of G are each generated in degree 1
higher than the previous one; that is, the matrices in G.dd all have linear
entries, as we have already seen.

3 The Cotangent Bundle of a Projective Variety

It is easy to construct the cotangent bundle ΩX of a projective variety X
starting from the cotangent bundle of the ambient projective space. We use
the conormal sequence (Hartshorne [7, Proposition II.8.12] or Eisenbud [4,
Proposition 16.3]). Writing I for the ideal of a variety X in Pn there is an
exact sequence of sheaves

I
δ- ΩPn ⊗OX - ΩX - 0

where the map δ takes a function f to the element df ⊗ 1. If I is generated
by forms f1, . . . , fm then δ is represented by the Jacobian matrix (dfi/dxj).

First of all, we must compute a module corresponding to ΩPn ⊗OX , the
restriction of the sheaf ΩPn to X. The simplest approach would be to take
the tensor product of graded modules representing ΩPn and OX . The result
would represent the right sheaf, but would not be the module of twisted
global sections of ΩPn ⊗ OX (the unique module of depth two representing
the sheaf). This would make further computations less efficient.

Thus we take a different approach: since the cotangent sequence given in
the previous section is a sequence of locally free sheaves, it is locally split,
and thus remains exact when tensored by OX . Consequently ΩPn ⊗ OX is
also represented by the kernel of the map f ⊗OX , where f is the map used
in the definition of the cotangent bundle of Pn. In Macaulay 2, working on
P

3, with X the twisted cubic, we can translate this into
i31 : OmegaP3res = kernel (f ** (ringP3^1/idealCubic))

o31 = subquotient ({1} | -x_3 0 0 -x_2 -x_3 0 -x_1 -x_2 -x_3 · · ·
{1} | x_2 -x_3 0 x_1 0 -x_3 x_0 0 0 · · ·
{1} | 0 x_2 -x_3 0 x_1 0 0 x_0 0 · · ·
{1} | 0 0 x_2 0 0 x_1 0 0 x_0 · · ·

4
o31 : ringP3-module, subquotient of ringP3

(The operator ** is Macaulay 2’s symbol for tensor product.) Since the map is
a map between free modules over ringP3/idealCubic, the kernel has depth
(at least) two.

Next, we form the Jacobian matrix of the generators of idealCubic, which
represents a map from this ideal to the free module ringP3^4.



Projective Geometry and Homological Algebra 9

i32 : delta1 = jacobian idealCubic

o32 = {1} | 0 -x_3 -x_2 |
{1} | -x_3 x_2 2x_1 |
{1} | 2x_2 x_1 -x_0 |
{1} | -x_1 -x_0 0 |

4 3
o32 : Matrix ringP3 <--- ringP3

We need to make this into a map to OmegaP3res, which as defined is a
subquotient of ringP3^4. To this end we must first express the image of
delta1 in terms of the generators of OmegaP3res. The division command //
does this with

i33 : delta2 = delta1 // (gens OmegaP3res)

o33 = {2} | 0 1 0 |
{2} | 2 0 0 |
{2} | 0 0 0 |
{2} | 0 0 2 |
{2} | 0 1 0 |
{2} | -1 0 0 |
{2} | 0 0 0 |
{2} | 0 0 -1 |
{2} | 0 -1 0 |

9 3
o33 : Matrix ringP3 <--- ringP3

Once this is done we can use this matrix to form the necessary map δ : I →
ΩP3 ⊗OX :

i34 : delta = map(OmegaP3res, module idealCubic, delta2)

o34 = {2} | 0 1 0 |
{2} | 2 0 0 |
{2} | 0 0 0 |
{2} | 0 0 2 |
{2} | 0 1 0 |
{2} | -1 0 0 |
{2} | 0 0 0 |
{2} | 0 0 -1 |
{2} | 0 -1 0 |

o34 : Matrix

A minimal free presentation of ΩX — or rather of one module over ringP3
that represents it — can be obtained with

i35 : OmegaCubic = prune coker delta

o35 = cokernel {2} | -10917x_3 0 -10917x_3 x_2 0 0 · · ·
{2} | 0 0 x_2 0 16374x_3 0 · · ·
{2} | 0 -x_3 0 16373x_3 0 x_2 · · ·
{2} | x_3 x_2 0 0 0 0 · · ·
{2} | 0 0 0 0 0 -2x_3 · · ·
{2} | 0 0 0 0 x_2 0 · · ·

6
o35 : ringP3-module, quotient of ringP3
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We have used the function prune to compute minimal presentation matrices;
these often make subsequent computations faster, and also allow us to inspect
the final answer more easily.

The module OmegaCubic represents the sheaf ΩX , where X is the cubic,
but it is not the simplest possibility. A better representative is the graded
module ⊕d∈ZH0(ΩX(d)). We can at least find a minimal presentation of the
submodule ⊕d≥0H0(ΩX(d)) with

i36 : prune HH^0((sheaf OmegaCubic)(>=0))

o36 = cokernel {1} | 16374x_3 16374x_2 16374x_1 |
{1} | x_2 x_1 x_0 |

2
o36 : ringP3-module, quotient of ringP3

The large coefficients appearing in the matrix arise in finite characteristic
as the result of chance division by small integers. We see from the degrees
labeling the rows of the matrix in the output of this command that the
generators of the submodule are in degree 1, so in particular H0(ΩX) = 0. It
follows that that H0(ΩX(d)) = 0 for all d ≤ 0, so the submodule we computed
was actually the whole module that we wanted! (If this had not been the
case we could have tried HH^0((sheaf OmegaCubic)(>=d)) to compute the
cohomology of all the twists greater than a given negative integer d, or simply
used the submodule we had already computed, since it also represents the
sheaf ΩX .)

The sequence of commands we have used to construct the cotangent sheaf
can be obtained also with the following built-in commands.

i37 : Cubic = Proj(ringP3/idealCubic)

o37 = Cubic

o37 : ProjectiveVariety

i38 : cotangentSheaf Cubic

o38 = cokernel {1} | x_2 x_1 x_0 |
{1} | -x_3 -x_2 -x_1 |

2
o38 : coherent sheaf on Cubic, quotient of OO (-1)

Cubic

Since X is a smooth curve, its cotangent bundle is equal to its canonical
bundle, and also to its dualizing sheaf (see Hartshorne [7, sections II.8 and
III.7] for definitions). We will see another (generally more efficient) method
of computing this dualizing sheaf by using Ext and duality theory.

4 Intersections by Serre’s Method

To introduce homological algebra in a simple geometric context, consider
the problem of computing the intersection multiplicities of two varieties X
and Y in Pn, assuming for simplicity that dimX + dimY = n and that the
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two meet in a zero-dimensional scheme. Beginning in the 19th century, many
people struggled to make a definition of local intersection multiplicity that
would make Bézout’s Theorem true: the product of the degrees of X and Y
should be the number of points of intersection, each counted with its local
intersection multiplicity (multiplied by the degree of the point, if the point
is not rational over the ground field). In the simplest case, where the two
varieties are Cohen-Macaulay, the right answer is that a point p should count
with multiplicity equal to the length of the local ring OX,p ⊗OPn,p OY,p, and
at first it was naively assumed that this would be the right answer in general.

Here is a famous example in P4 showing that the naive value can be
wrong: in it, the scheme X is a 2-plane and the scheme Y = L1 ∪ L2 is the
union of two 2-planes. The planes L1 and L2 meet at just one point p, and
we assume that X passes through p as well, and is general enough so that it
meets Y only in p. Since degree(X) = 1,degree(Y ) = 2, Bézout’s Theorem
requires that the multiplicity of the intersection at p should be 2. However,
we have:

i39 : ringP4 = kk[x_0..x_4]

o39 = ringP4

o39 : PolynomialRing

i40 : idealX = ideal(x_1+x_3, x_2+x_4)

o40 = ideal (x + x , x + x )
1 3 2 4

o40 : Ideal of ringP4

i41 : idealL1 = ideal(x_1,x_2)

o41 = ideal (x , x )
1 2

o41 : Ideal of ringP4

i42 : idealL2 = ideal(x_3,x_4)

o42 = ideal (x , x )
3 4

o42 : Ideal of ringP4

i43 : idealY = intersect(idealL1,idealL2)

o43 = ideal (x x , x x , x x , x x )
2 4 1 4 2 3 1 3

o43 : Ideal of ringP4

i44 : degree(idealX+idealY)

o44 = 3

That is, the length of OX,p ⊗OPn,p OY,p is 3 rather than 2. (We can do this
computation without first passing to local rings because there is only one
point of intersection, and because all the constructions we are using commute
with localization.)
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It was the happy discovery of Jean-Pierre Serre [11, V.B.3] that the naive
measure of intersection multiplicity can be fixed in a simple way that works
for all intersections in smooth varieties. One simply replaces the length of the
tensor product

OX,p ⊗OPn,p OY,p = TorOPn,p0 (OX,p,OY,p)

with the alternating sum of the Tor functors∑
i

(−1)i length TorOPn,pi (OX,p,OY,p).

In Macaulay 2 we can proceed as follows:
i45 : degree Tor_0(ringP4^1/idealX, ringP4^1/idealY)

o45 = 3

i46 : degree Tor_1(ringP4^1/idealX, ringP4^1/idealY)

o46 = 1

i47 : degree Tor_2(ringP4^1/idealX, ringP4^1/idealY)

o47 = 0

The other Tor’s are 0 because the projective dimension of ringP4^1/idealX
is only two, as we see from

i48 : res (ringP4^1/idealX)

1 2 1
o48 = ringP4 <-- ringP4 <-- ringP4 <-- 0

0 1 2 3

o48 : ChainComplex

Thus, indeed, the alternating sum is 2, and Bézout’s Theorem is upheld.

5 A Mystery Variety in P3

In the file mystery.m2 is a function called mystery that will compute the
ideal of a subvariety X of P3. We’ll reveal what it does at the end of the
chapter. Let’s run it.

i49 : ringP3 = kk[x_0..x_3];

i50 : load "mystery.m2"

i51 : idealX = mystery ringP3

4 2 2 2 2 2 2 2 · · ·
o51 = ideal (x - 2x x x - x x x + x x , x x - 10915x x x - 10917x · · ·

1 0 1 3 1 2 3 0 3 0 1 0 1 2 · · ·
o51 : Ideal of ringP3
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We can’t see all the generators of the ideal; the same file contains a function
prettyPrint which will display the generators visibly.

i52 : prettyPrint gens idealX
x_1^4-2*x_0*x_1^2*x_3-x_1^2*x_2*x_3+x_0^2*x_3^2,
x_0^2*x_1^2-10915*x_0*x_1^2*x_2-10917*x_0^3*x_3+10916*x_0^2*x_2*x_3-

10916*x_0*x_2^2*x_3-10916*x_1*x_3^3,
x_0*x_1^2*x_2^2+11909*x_0^4*x_3+5954*x_0^3*x_2*x_3+2977*x_0^2*x_2^2*x_3+

11910*x_0*x_2^3*x_3-2978*x_1^3*x_3^2+14887*x_0*x_1*x_3^3+
11910*x_1*x_2*x_3^3,

x_0*x_1^3*x_2-13099*x_1^3*x_2^2-6550*x_0^3*x_1*x_3-
13100*x_0^2*x_1*x_2*x_3-6550*x_0*x_1*x_2^2*x_3+13099*x_1*x_2^3*x_3+
13100*x_1^2*x_3^3+13099*x_0*x_3^4,

x_0^5+5*x_0^2*x_2^3+5*x_0*x_2^4-3*x_0*x_1^3*x_3-4*x_1^3*x_2*x_3+
4*x_0^2*x_1*x_3^2+10*x_0*x_1*x_2*x_3^2+5*x_1*x_2^2*x_3^2,

x_1^2*x_2^4-8932*x_0^4*x_2*x_3+11909*x_0^3*x_2^2*x_3+5954*x_0^2*x_2^3*x_3-
8934*x_0*x_2^4*x_3-x_2^5*x_3+2*x_0*x_1^3*x_3^2-5952*x_1^3*x_2*x_3^2-
x_0^2*x_1*x_3^3-2979*x_0*x_1*x_2*x_3^3-8934*x_1*x_2^2*x_3^3+x_3^6

Imagine that you found yourself looking at the scheme X in P3 defined by
the 6 equations above.

i53 : X = variety idealX

o53 = X

o53 : ProjectiveVariety

How would you analyze the scheme X? We will illustrate one approach.
In outline, we will first look at the topological invariants: the number

and dimensions of the irreducible components, and how they meet if there
is more than one; the topological type of each component; and the degree of
each component in P3. We will then see what we can say about the analytic
invariants of X using adjunction theory (we give some references at the end).

Since we are interested in the projective scheme defined by idealX we
could work with any ideal having the same saturation. It is usually the case
that working with the saturation itself greatly eases subsequent computation
so, as a matter of good practice, we begin by checking whether the ideal is
saturated. If not, we should replace it with its saturation.

i54 : idealX == saturate idealX

o54 = true

Thus we see that idealX is already saturated. Perhaps the most basic invari-
ant of X is its dimension:

i55 : dim X

o55 = 1

This shows that X consists of a curve, and possibly some zero-dimensional
components. The command

i56 : idealXtop = top idealX

4 2 2 2 2 2 2 2 · · ·
o56 = ideal (x - 2x x x - x x x + x x , x x - 10915x x x - 10917x · · ·

1 0 1 3 1 2 3 0 3 0 1 0 1 2 · · ·
o56 : Ideal of ringP3
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returns the ideal of the largest dimensional components of X. If there were
0-dimensional components (or if idealX were not saturated) then idealXtop
would be larger than idealX. To test this we reduce idealXtop modulo
idealX and see whether we get 0:

i57 : (gens idealXtop)%(gens idealX) == 0

o57 = true

Thus X is a purely one-dimensional scheme.
Is X singular?
i58 : codim singularLocus idealX

o58 = 4

A variety of codimension 4 in P3 must be empty, so X is a nonsingular curve.
A nonsingular curve in P3 could still be reducible, but since the inter-

section of two components would be a singular point, the curve would then
be disconnected. A straightforward way to decide is to use the command
decompose, which returns a list of irreducible components defined over kk.
The length of this list,

i59 : # decompose idealX

o59 = 1

is thus the number of irreducible components that are defined over kk, and
we see there is only one. (Warning: at this writing (December 2000), the
command “decompose” works only in positive characteristic).

Often what we really want to know is whether X is absolutely irreducible
(that is, irreducible over the algebraic closure of kk). The property of being
smooth transfers to the algebraic closure, so again the question is the number
of connected components we would get over the algebraic closure. For any
reduced scheme X over a perfect field (such as our finite field kk) this number
is h0OX := dimkk H0OX . We compute it with

i60 : HH^0 OO_X

1
o60 = kk

o60 : kk-module, free

i61 : rank oo

o61 = 1

This command works much faster than the decompose command. (You can
compute the time by adding the command time to the beginning of the line
where the command to be timed starts.) Since we already know that idealX
is saturated, this also shows that idealX is prime.

We next ask for the genus of the curve X. Here the genus may be defined
as the dimension of the space H1OX . We can get this space with

i62 : HH^1 OO_X

6
o62 = kk
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o62 : kk-module, free

The genus of the curve is the dimension of this space, which we can see to be
6. Next, the cohomology class of X in P3 is determined by the degree of X:

i63 : degree idealX

o63 = 10

In sum: X is a smooth, absolutely irreducible curve of genus 6 and degree 10.
We next ask for analytic information about the curve and the embedding.

A reasonable place to start is with the relation between the line bundle defin-
ing the embedding and the canonical sheaf ωX . Notice first that the degree
of the hyperplane divisor (the degree of the curve) is 10 = 2g-2, the same as
the canonical bundle. By Riemann-Roch the embedding line bundle either is
the canonical bundle or has first cohomology 0, which we can check with

i64 : P3 = Proj ringP3

o64 = P3

o64 : ProjectiveVariety

i65 : HH^1((OO_P3(1)/idealX)(>=0))

o65 = cokernel | x_3 x_2 x_1 x_0 |

1
o65 : ringP3-module, quotient of ringP3

Let’s examine the degree of the generator of that module.
i66 : degrees oo

o66 = {{0}}

o66 : List

From that and the presentation matrix above we see that this cohomology
module is the residue class field ringP3/(x0, x1, x2, x3), concentrated in degree
0. Thus the embedding line bundle OX(1) is isomorphic to ωX . On the other
hand the dimension of the space of sections of this line bundle has already
been computed; it is g = 6. The curve is embedded in P

3, so only 4 of
these sections were used—the embedding is a projection of the same curve,
embedded in P6 by the canonical map.

We next ask more about the curve itself. After the genus, the gonality and
the Clifford index are among the most interesting invariants. Recall that the
gonality of X is the smallest degree of a mapping from X to P1. To define
the Clifford index of X we first define the Clifford index of a line bundle
L on X to be degree(L) − 2(h0(L) − 1). For example, the Clifford indices
of the structure sheaf OX and the canonical sheaf ωX are both equal to 0.
The Clifford index of the curve X is defined to be the minimum value of
the Clifford index of a line bundle L on X for which both h0(L) ≥ 2 and
h1(L) ≥ 2. The Clifford index of a curve of genus g lies between 0 (for a
hyperelliptic curve) and b(g− 1)/2c (for a general curve). The Clifford index
of any curve is bounded above by the gonality minus 2.
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For a curve of genus 6 such as X, the gonality is either 2 (the hyperelliptic
case), 3 (the trigonal case) or 4 (the value for general curves). The Clifford
index, on the other hand is either 0 (the hyperelliptic case) or 1 (the case of
a trigonal curve OR a smooth plane quintic curve—which is necessarily of
gonality 4) or 2 (the case of a general curve). Thus for most curves (and this
is true in any genus) the Clifford index is equal to the gonality minus 2.

We can make a start on distinguishing these cases already: since our
curve is embedded in P3 by a subseries of the canonical series, X cannot be
hyperelliptic (for hyperelliptic curves, the canonical series maps the curve
two-to-one onto a rational curve.)

To make further progress we use an idea of Mark Green (see Green and
Lazarsfeld [5]). Green conjectured a formula for the Clifford index that de-
pends only on numerical data about the free resolution of the curve in its
complete canonical embedding (where the hyperplanes cut out all the canon-
ical divisors). The conjecture is known for genus 6 and in many other cases;
see for example Schreyer [9].

We therefore begin by computing the canonical embedding of X. We
could proceed to find the canonical bundle as in the computation for P3

above, or indeed as OX(1), but instead we describe the general method that
is most efficient: duality, as described (for example) in the book of Altman
and Kleiman [1]. The module ⊕d∈ZH0(ωX(d)) can be computed as

i67 : omegaX = Ext^(codim idealX)(ringP3^1/idealX, ringP3^{-4})

o67 = cokernel {0} | 9359x_3 -4677x_3 -10105x_1 · · ·
{0} | 12014x_1 2552x_1 2626x_0 · · ·
{-1} | x_0x_3-2553x_2x_3 x_1^2-1702x_2x_3 x_0x_1-8086x_ · · ·

3
o67 : ringP3-module, quotient of ringP3

To find the equations of the canonical embedding of X, we first compute
a basis of H0(ωX), which is the degree 0 part of the module omegaX. The
desired equations are computed as the algebraic relations among the images
of this basis under any monomorphism ωX → OX .

As the ring ringP3/idealX is a domain, and ωX is the module corre-
sponding to a line bundle, any nonzero map from ωX to ringP3/idealX will
be an embedding. We can compute the module of such maps with

i68 : dualModule = Hom(omegaX, ringP3^1/idealX)

o68 = subquotient ({0} | x_0^3x_2^2+10915x_0^2x_2^3+807x_0x_2^4+4043x_ · · ·
{0} | 10105x_0x_1x_2^3+6063x_1x_2^4+11820x_0x_1^2x_ · · ·
{1} | 10105x_0^2x_2^2-11322x_0x_2^3+11322x_2^4+8396 · · ·

3
o68 : ringP3-module, subquotient of ringP3

and examine it with
i69 : betti prune dualModule

o69 = relations : total: 10 26
3: 3 2



Projective Geometry and Homological Algebra 17

4: 6 14
5: 1 9
6: . 1

For want of a better idea we take the first generator, dualModule_{0}, which
we can turn into an actual homomorphism with

i70 : f = homomorphism dualModule_{0}

o70 = | x_0^3x_2^2+10915x_0^2x_2^3+807x_0x_2^4+4043x_2^5+7655x_0x_1x_2 · · ·
o70 : Matrix

The image of a basis of ωX is given by the columns of the matrix
i71 : canGens = f*basis(0,omegaX)

o71 = | x_0^3x_2^2+10915x_0^2x_2^3+807x_0x_2^4+4043x_2^5+7655x_0x_1x_2 · · ·
o71 : Matrix

regarded as elements of
i72 : ringX = ringP3/idealX

o72 = ringX

o72 : QuotientRing

Because of the particular homomorphism we chose, they have degree 5.
We can now compute the defining ideal for X in its canonical embedding

as the relations on these elements. We first define a ring with 6 variables
corresponding to the columns of canGens

i73 : ringP5 = kk[x_0..x_5]

o73 = ringP5

o73 : PolynomialRing

and then compute the canonical ideal as the kernel of the corresponding map
from this ring to ringX with

i74 : idealXcan = trim kernel map(ringX, ringP5,
substitute(matrix canGens,ringX),
DegreeMap => i -> 5*i)

2 · · ·
o74 = ideal (x + 5040x x - 8565x x - 11589x x , x x - 6048x x - 1 · · ·

3 0 5 2 5 4 5 1 3 0 5 · · ·
o74 : Ideal of ringP5

Here the command trim is used to extract a minimal set of generators of
the desired ideal, and the command matrix replaces the map of (nonfree)
modules canGens by the matrix that gives its action on the generators. The
DegreeMap option specifies a function which transforms degrees (represented
as lists of integers) as the ring homomorphism does; using it here makes the
ring map homogeneous.

To get information about the Clifford index, we examine the free resolu-
tion with
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i75 : betti res idealXcan

o75 = total: 1 9 16 9 1
0: 1 . . . .
1: . 6 8 3 .
2: . 3 8 6 .
3: . . . . 1

Quite generally, for a non-hyperelliptic curve of genus g ≥ 3 the ideal of the
canonical embedding requires g −

(
2
2

)
quadratic generators, in our case 6. It is

known that the curve is trigonal (Clifford index 1) if and only if the ideal also
requires cubic generators, that is, the first term in the free resolution requires
generators of degree 3 = 1 + 2; and Green’s conjecture says in general that
the curve has Clifford index c if the c − 1 term in the resolution does not
require generators of degree (c − 1) + 2 = c + 1 but the c term does require
generators of degree c+2. Thus from the Betti diagram above, and the truth
of Green’s conjecture in low genus, we see that our curve has Clifford index
1 and is thus either trigonal or a plane quintic.

If X is trigonal, that is, X has a map of degree 3 to P1, then the fibers
of this map form a linear series whose elements are divisors of degree three.
The geometric form of the Riemann-Roch theorem says that if

p1, . . . , pd ∈ X ⊂ Pg

are points on a canonically embedded curve X, then the dimension of the
linear system in which the divisor p1 + · · · + pd moves is the amount by
which the points fail to be linearly independent: d − 1 minus the dimension
of the projective plane spanned by the points. In particular, the 3 points in
the fiber of a three-to-one map to P1 are linearly dependent, that is, they
span a projective line. This “explains” why the ideal of a trigonal curve
requires cubic generators: the quadrics all contain three points of these lines
and thus contain the whole lines! It is known (see St-Donat [8]) that, in
the trigonal case, the 6 quadrics in the ideal of the canonical curve generate
the defining ideal of the variety which is the union of these lines, and that
variety is a rational normal scroll. In case X is a plane quintic, the adjunction
formula (Hartshorne [7, II.8.20.3]) shows that the canonical embedding of
X is obtained from the plane embedding by composing with the Veronese
embedding of the plane in P5 as the Veronese surface; and the 6 quadrics in
the ideal of the canonical curve generate the defining ideal of the Veronese
surface.

Thus if we let S denote the variety defined by the quadrics in the ideal
of X, we can decide whether X is a trigonal curve or a plane quintic by
deciding whether S is a rational normal scroll or a Veronese surface. To
compute the ideal of S we first ascertain which of the generators of the ideal
of the canonical curve have degree 2 with

i76 : deg2places = positions(degrees idealXcan, i->i=={2})

o76 = {0, 1, 2, 3, 4, 5}

o76 : List
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and then compute
i77 : idealS= ideal (gens idealXcan)_deg2places

2 · · ·
o77 = ideal (x + 5040x x - 8565x x - 11589x x , x x - 6048x x - 1 · · ·

3 0 5 2 5 4 5 1 3 0 5 · · ·
o77 : Ideal of ringP5

One of the scrolls that could appear is singular, the cone over the rational
quartic in P4. We check for singularity first:

i78 : codim singularLocus idealS

o78 = 6

Since the codimension is 6, the surface S is nonsingular, and thus must be
one of the nonsingular scrolls or the Veronese surface (which is by definition
the image of P2, embedded in P5 by the linear series of conics.)

The ideals defining any rational normal scroll of codimension 3, and the
ideal of a Veronese surface all have free resolutions with the same Betti dia-
grams, so we need a subtler method to determine the identity of S. The most
powerful tool for such purposes is adjunction theory; we will use a simple
version.

The idea is to compare the embedding bundle (the “hyperplane bundle”)
with the canonical bundle. On the Veronese surface, the canonical bundle
is the bundle associated to −3 lines in P2, while the hyperplane bundle is
associated to 2 lines in P2. Thus the inverse of the square of the canonical
bundle is the cube of the hyperplane bundle, OS(3). For a scroll on the other
hand, these two bundles are different.

As before we follow the homological method for computing the canonical
bundle:

i79 : omegaS = Ext^(codim idealS)(ringP5^1/idealS, ringP5^{-6})

o79 = cokernel {2} | 4032x_5 0 14811x_5 -4032x_3 6549x_3 · · ·
{2} | x_3 x_2 x_1 -x_4 x_0-14291x_ · · ·
{2} | -6852x_5 6549x_3 362x_5 x_1-6248x_3 0 · · ·

3
o79 : ringP5-module, quotient of ringP5

i80 : OS = ringP5^1/idealS

o80 = cokernel | x_3^2+5040x_0x_5-8565x_2x_5-11589x_4x_5 x_1x_3-6048x_ · · ·
1

o80 : ringP5-module, quotient of ringP5

We want the square of the canonical bundle, which we can compute as
the tensor square

i81 : omegaS**omegaS

o81 = cokernel {4} | 4032x_5 0 14811x_5 -4032x_3 6549x_3 · · ·
{4} | x_3 x_2 x_1 -x_4 x_0-14291x_ · · ·
{4} | -6852x_5 6549x_3 362x_5 x_1-6248x_3 0 · · ·
{4} | 0 0 0 0 0 · · ·
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{4} | 0 0 0 0 0 · · ·
{4} | 0 0 0 0 0 · · ·
{4} | 0 0 0 0 0 · · ·
{4} | 0 0 0 0 0 · · ·
{4} | 0 0 0 0 0 · · ·

9
o81 : ringP5-module, quotient of ringP5

But while this module represents the correct sheaf, it is hard to interpret,
since it may not be (is not, in this case) the module of all twisted global
sections of the square of the line bundle. Since the free resolution of OS (visible
inside the Betti diagram of the resolution of idealXcan) has length 3, the
module OS has depth 2. Thus we can find the module of all twisted global
sections of omega2S by taking the double dual

i82 : omega2S = Hom(Hom(omegaS**omegaS, OS),OS)

o82 = cokernel {3} | x_3^2+5040x_0x_5-8565x_2x_5-11589x_4x_5 x_1x_3-60 · · ·
1

o82 : ringP5-module, quotient of ringP5

We see from the output that this module is generated by 1 element of
degree 3. It follows that ω2

S
∼= OS(−3). This in turn shows that S is the

Veronese surface.
We now know that the canonical embedding of the curve X is the Veronese

map applied to a planar embedding of X of degree 5, and we can ask to see
the plane embedding. Since the anticanonical bundle ω−1

S on S corresponds
to 3 lines in the plane and the hyperplane bundle to 2 lines, we can recover
the line bundle corresponding to 1 line, giving the isomorphism of X to the
plane, as the quotient

i83 : L = Hom(omegaS, OS**(ringP5^{-1}))

o83 = subquotient ({-1} | 14401x_2+16185x_4 x_0-14291x_4 -5359x_1+1 · · ·
{-1} | -1488x_1-10598x_3 -6549x_3 -11789x_5 · · ·
{-1} | x_0+7742x_2-15779x_4 x_2 x_1+6551x_ · · ·

3
o83 : ringP5-module, subquotient of ringP5

and the line bundle on Xcan that gives the embedding in P2 will be the
restriction of L to Xcan. To realize the map from X to P2, we proceed as
before:

i84 : dualModule = Hom(L, OS)

o84 = subquotient (| x_0+7742x_2-15779x_4 14401x_2+16185x_4 x_1-301x_3 · · ·
| x_2 x_0-14291x_4 4032x_3 · · ·
| x_1+6551x_3 -5359x_1+14409x_3 -9874x_5 · · ·

3
o84 : ringP5-module, subquotient of ringP5

i85 : betti generators dualModule

o85 = total: 3 3
0: 3 3



Projective Geometry and Homological Algebra 21

Again, we may choose any homomorphism from L to OS, for example
i86 : g = homomorphism dualModule_{0}

o86 = | x_0+7742x_2-15779x_4 x_2 x_1+6551x_3 |

o86 : Matrix

i87 : toP2 = g*basis(0,L)

o87 = | x_0+7742x_2-15779x_4 x_2 x_1+6551x_3 |

o87 : Matrix

i88 : ringXcan = ringP5/idealXcan

o88 = ringXcan

o88 : QuotientRing

i89 : ringP2 = kk[x_0..x_2]

o89 = ringP2

o89 : PolynomialRing

i90 : idealXplane = trim kernel map(ringXcan, ringP2,
substitute(matrix toP2,ringXcan))

5 4 3 2 2 3 4 5 · · ·
o90 = ideal(x + 13394x x - 13014x x + 9232x x + 12418x x - 2746x · · ·

0 0 1 0 1 0 1 0 1 1 · · ·
o90 : Ideal of ringP2

We have effectively computed the square root of the line bundle embed-
ding X in P3 with which we started, and exchanged a messy set of defining
equations of an unknown scheme for a single equation defining a smooth
plane curve whose properties are easy to deduce. The same curve may also
be defined by a much simpler plane equation (see Appendix A below). I do
not know any general method for choosing a coordinate transformation to
simplify a given equation! Can the reader find one that will work at least in
this case?

There is not yet a textbook-level exposition of the sort of methods we have
used (although an introduction will be contained in a forthcoming elementary
book of Decker and Schreyer). The reader who would like to go further into
such ideas can find a high-level survey of how adjunction theory is used in
the paper of Decker and Schreyer [3]. For a group of powerful methods with
a different flavor, see Aure, Decker, Hulek, Popescu, and Ranestad [2].

Appendix A. How the “Mystery Variety” was Made

For those who would like to try out the computations above over a different
field (perhaps the field of rational numbers QQ), and for the curious, we include
the code used to produce the equations of the variety X above.

Start with the Fermat quintic in the plane
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i91 : ringP2 = kk[x_0..x_2]

o91 = ringP2

o91 : PolynomialRing

i92 : idealC2 = ideal(x_0^5+x_1^5+x_2^5)

5 5 5
o92 = ideal(x + x + x )

0 1 2

o92 : Ideal of ringP2

Embed it by the Veronese map in P5:
i93 : ringC2 = ringP2/idealC2

o93 = ringC2

o93 : QuotientRing

i94 : ringP5 = kk[x_0..x_5]

o94 = ringP5

o94 : PolynomialRing

i95 : idealC5 = trim kernel map(ringC2, ringP5,
gens (ideal vars ringC2)^2)

2 2 · · ·
o95 = ideal (x - x x , x x - x x , x x - x x , x - x x , x x - x · · ·

4 3 5 2 4 1 5 2 3 1 4 2 0 5 1 2 0 · · ·
o95 : Ideal of ringP5

Finally, choose a projection into P3, from a line not meeting C5, which is an
isomorphism onto its image. (This requires the image to be a smooth curve
of degree 10).

i96 : ringC5 = ringP5/idealC5

o96 = ringC5

o96 : QuotientRing

i97 : use ringC5

o97 = ringC5

o97 : QuotientRing

i98 : idealC = trim kernel map(ringC5, ringP3,
matrix{{x_0+x_1,x_2,x_3,x_5}})

4 2 2 2 2 2 2 2 · · ·
o98 = ideal (x - 2x x x - x x x + x x , x x - 10915x x x - 10917x · · ·

1 0 1 3 1 2 3 0 3 0 1 0 1 2 · · ·
o98 : Ideal of ringP3

Let’s check that this is the same ideal as that of the mystery variety.
i99 : idealC == idealX

o99 = true
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Here is the code of the function mystery, which does the steps above.
i100 : code mystery

o100 = -- mystery.m2:1-13
mystery = ringP3 -> (

kk := coefficientRing ringP3;
x := local x;
ringP2 := kk[x_0..x_2];
idealC2 := ideal(x_0^5+x_1^5+x_2^5);
ringC2 := ringP2/idealC2;
ringP5 := kk[x_0..x_5];
idealC5 := trim kernel map(ringC2, ringP5,

gens (ideal vars ringC2)^2);
ringC5 := ringP5/idealC5;
use ringC5;
trim kernel map(ringC5, ringP3,

matrix{{x_0+x_1,x_2,x_3,x_5}}))

And here is the code of the function prettyPrint.
i101 : code prettyPrint

o101 = -- mystery.m2:15-51
prettyPrint = f -> (

-- accept a matrix f and print its entries prettily,
-- separated by commas
wid := 74;
-- page width
post := (c,s) -> (

-- This function concatenates string c to end of each
-- string in list s except the last one
concatenate \ pack_2 between_c s);

strings := post_"," (toString \ flatten entries f);
-- list of strings, one for each polynomial, with commas
istate := ("",0);
-- initial state = (out : output string, col : column number)
strings = apply(

strings,
poly -> first fold(

-- break each poly into lines
(state,term) -> (

(out,col) -> (
if col + #term > wid -- too wide?
then (

out = out | "\n ";
col = 3;
-- insert line break
);

(out | term, col + #term) -- new state
)

) state,
istate,
fold( -- separate poly into terms

{"+","-"},
{poly},
(delimiter,poly) -> flatten(

post_delimiter \ separate_delimiter \ poly
))));

print stack strings; -- stack them vertically, then print
)
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édition, 1965. Lecture Notes in Mathematics, 11.



Index

% 3

32749 1

absolutely irreducible
14

adjunction theory 13

betti 6
Betti diagram 6
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– hyperelliptic 15
– plane quintic 16
– trigonal 16

dd 5
dd i, i-th differential of a

complex 6
decompose 14
decompose a variety 14
degree of a projective

variety 3
degrees 6

diagram, Betti 6
differentials of a complex

5
dimension of a projective

variety 3
division command 9
duality 10
dualizing sheaf 10

Ext 16

finite fields
– use of 1

generators 3
gens 3
genus of a curve 14
gonality 15
Green’s conjecture 16

HH 10
homogeneous coordinate

ring 2
homogeneous ideal 2
homological methods
– introduction to 1
hyperelliptic curve 15

ideal 3
image 5
intersection multiplicities

10
intersection theory 10
irreducible
– absolutely 14
irreducible decomposi-

tion 14

jacobian 8
Jacobian matrix 8

kernel of a module map
4

kernel of a ring map 2

length of a module 11

map of modules 9
map of rings 2
matrix 2
minors 3
modules
– how to represent 4
monomialCurveIdeal 2

positions 18
presentation
– minimal 9
presentation 5
primary decomposition

14
projective space 1
prune 9

rational normal scroll
18

reduced form 3
res 5
resolution
– free 5
Riemann-Roch theorem
– geometric 18

saturate 13
saturation 13
Schreyer’s algorithm for

free resolutions 6
scroll
– rational normal 18
Serre correspondence 2
Serre’s intersection

formula 10
sheaf
– representation of 2
sheaf 10
sheaf cohomology 10
singular locus of a

scheme 14
source 6

target 6
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time 14

top dimensional part of
an ideal 14

topology of a projective
variety 13

Tor 12
trigonal curve 16

trim 17
twisted cubic 2

Veronese surface 18


