
Algorithms for the Toric Hilbert Scheme

Michael Stillman, Bernd Sturmfels, and Rekha Thomas

The toric Hilbert scheme parametrizes all algebras isomorphic to a given semi-
group algebra as a multigraded vector space. All components of the scheme
are toric varieties, and among them, there is a fairly well understood co-
herent component. It is unknown whether toric Hilbert schemes are always
connected. In this chapter we illustrate the use of Macaulay 2 for exploring
the structure of toric Hilbert schemes. In the process we will encounter al-
gorithms from commutative algebra, algebraic geometry, polyhedral theory
and geometric combinatorics.

Introduction

Consider the multigrading of the polynomial ring R = C[x1, . . . , xn] specified
by a non-negative integer d × n-matrix A = (a1, . . . , an) such that degree
(xi) = ai ∈ Nd. This defines a decomposition R =

⊕
b∈NARb, where NA is

the subsemigroup of Nd spanned by a1, . . . , an, and Rb is the C-span of all
monomials xu = xu1

1 · · ·xunn with degree Au = a1u1 + · · · + anun = b. The
toric Hilbert scheme HilbA parametrizes all A-homogeneous ideals I ⊂ R
(ideals that are homogeneous under the multigrading of R by NA) with the
property that (R/I)b is a 1-dimensional C-vector space, for all b ∈ NA. We
call such an ideal I an A-graded ideal. Equivalently, I is A-graded if it is
A-homogeneous and R/I is isomorphic as a multigraded vector space to the
semigroup algebra C[NA] = R/IA, where

IA := 〈xu − xv : Au = Av〉 ⊂ R

is the toric ideal of A. An A-graded ideal is generated by binomials and
monomials in R since, by definition, any two monomials xu and xv of the
same degree Au = Av must be C-linearly dependent modulo the ideal.

We recommend [22, §4, §10] as an introductory reference for the topics
in this chapter. The study of toric Hilbert schemes for d = 1 goes back to
Arnold [1] and Korkina et al.[13], and it was further developed by Sturmfels
([21] and [22, §10]). Peeva and Stillman [17] introduced the scheme structure
that gives the toric Hilbert scheme its universal property, and from this they
derive a formula for the tangent space of a point on HilbA. Maclagan recently
showed that the quadratic binomials in [21, §5] define the same scheme as
the determinantal equations in [17]. Both of these systems of global equations
are generally much too big for practical computations. Instead, most of our
algorithms are based on the local equations given by Peeva and Stillman in
[16] and the combinatorial approach of Maclagan and Thomas in [14].

2 M. Stillman, B. Sturmfels, and R. Thomas

We begin with the computation of a toric ideal using Macaulay 2. Our
running example throughout this chapter is the following 2× 5-matrix:

A =
(

1 1 1 1 1
0 1 2 7 8

)
, (1)

which we input to Macaulay 2 as a list of lists of integers.
i1 : A = {{1,1,1,1,1},{0,1,2,7,8}};

The toric ideal of A lives in the multigraded ring R := C[a, b, c, d, e].
i2 : R = QQ[a..e,Degrees=>transpose A];

i3 : describe R

o3 = QQ [a, b, c, d, e, Degrees => {{1, 0}, {1, 1}, {1, 2}, {1, 7}, {1 · · ·
We use Algorithm 12.3 in [22] to compute IA. The first step is to find a

matrix B whose rows generate the lattice kerZ(A) := {x ∈ Zn : Ax = 0}.
i4 : B = transpose syz matrix A

o4 = | 1 -2 1 0 0 |
| 0 5 -6 1 0 |
| 0 6 -7 0 1 |

3 5
o4 : Matrix ZZ <--- ZZ

Although in theory any basis of kerZ(A) will suffice, in practice it is
more efficient to use a reduced basis [20, §6.2], which can be computed using
the basis reduction package LLL.m2 in Macaulay 2. The command LLL when
applied to the output of syz matrix A will return a matrix of the same size
whose columns form a reduced lattice basis for kerZ(A). The output appears
in compressed form as follows:

i5 : load "LLL.m2";

i6 : LLL syz matrix A

o6 = | 0 1 2 |
| 1 -1 0 |
| -1 0 -3 |
| -1 -1 2 |
| 1 1 -1 |

5 3
o6 : Matrix ZZ <--- ZZ

We recompute B using this package to get the following 3× 5 matrix.
i7 : B = transpose LLL syz matrix A

o7 = | 0 1 -1 -1 1 |
| 1 -1 0 -1 1 |
| 2 0 -3 2 -1 |

3 5
o7 : Matrix ZZ <--- ZZ

Toric Hilbert Schemes 3

The advantage of a reduced basis may not be apparent in small examples.
However, as the size of A increases, it becomes increasingly important for the
termination of Algorithm 12.3 in [22]. (To appreciate this, consider the matrix
(7) from Section 4.)

A row b = b+− b− of B is then coded as the binomial xb
+ −xb− ∈ R, and

we let J be the ideal generated by all such binomials.
i8 : toBinomial = (b,R) -> (

top := 1_R; bottom := 1_R;
scan(#b, i -> if b_i > 0 then top = top * R_i^(b_i)

else if b_i < 0 then bottom = bottom * R_i^(-b_i));
top - bottom);

i9 : J = ideal apply(entries B, b -> toBinomial(b,R))

2 2 3
o9 = ideal (- c*d + b*e, - b*d + a*e, a d - c e)

o9 : Ideal of R

The toric ideal equals (J : (x1 · · ·xn)∞), which is computed via n successive
saturations as follows:

i10 : scan(gens ring J, f -> J = saturate(J,f))

Putting the above pieces of code together, we get the following procedure
for computing the toric ideal of a matrix A.

i11 : toricIdeal = (A) -> (
n := #(A_0);
R = QQ[vars(0..n-1),Degrees=>transpose A,MonomialSize=>16];
B := transpose LLL syz matrix A;
J := ideal apply(entries B, b -> toBinomial(b,R));
scan(gens ring J, f -> J = saturate(J,f));
J
);

See [2], [11] and [22, §4, §12] for other algorithms for computing toric
ideals and various ideas for speeding up the computation.

In our example, IA = 〈cd− be, bd− ae, b2 − ac, a2d2 − c3e, c4 − a3e, bc3 −
a3d, ad4 − c2e3, d6 − ce5〉, which we now compute using this procedure.

i12 : I = toricIdeal A;

o12 : Ideal of R

i13 : transpose mingens I

o13 = {-2, -9} | cd-be |
{-2, -8} | bd-ae |
{-2, -2} | b2-ac |
{-4, -14} | a2d2-c3e |
{-4, -8} | c4-a3e |
{-4, -7} | bc3-a3d |
{-5, -28} | ad4-c2e3 |
{-6, -42} | d6-ce5 |

8 1
o13 : Matrix R <--- R

4 M. Stillman, B. Sturmfels, and R. Thomas

This ideal defines an embedding of P1 as a degree 8 curve into P4. We
will see in Section 3 that its toric Hilbert scheme HilbA has a non-reduced
component.

This chapter is organized into four sections and two appendices as fol-
lows. The main goal in Section 1 is to describe an algorithm for generating
all monomial A-graded ideals for a given A. These monomial ideals are the
vertices of the flip graph of A whose connectivity is equivalent to the connec-
tivity of HilbA. We describe how all neighbors of a given vertex of this graph
can be calculated. In Section 2, we explain the role of polyhedral geometry
in the study of HilbA. Our first algorithm tests for coherence in a monomial
A-graded ideal. We then show how to compute the polyhedral complexes sup-
porting A-graded ideals, which in turn relate the flip graph of A to the Baues
graph of A. For unimodular matrices, these two graphs coincide and hence our
method of computing the flip graph can be used to compute the Baues graph.
Section 3 explores the components of HilbA via local equations around the
torus fixed points of the scheme. We include a combinatorial interpretation
of these local equations from the point of view of integer programming. The
scheme HilbA has a coherent component, which is examined in detail in Sec-
tion 4. We prove that this component is, in general, not normal and that its
normalization is the toric variety of the Gröbner fan of IA. We conclude the
chapter with two appendices, each containing one large piece of Macaulay 2
code that we use in this chapter. Appendix A displays code from the Mac-
aulay 2 file polarCone.m2 that is used to convert a generator representation
of a polyhedron to an inequality representation and vice versa. Appendix B
displays code from the file minPres.m2 used for computing minimal presen-
tations of polynomial quotient rings. The main ingredient of this package is
the subroutine removeRedundantVariables, which is what we use in this
chapter.

1 Generating Monomial Ideals

We start out by computing the Graver basis GrA, which is the set of binomials
in IA that are minimal with respect to the partial order defined by

xu − xv ≤ xu
′
− xv

′
⇐⇒ xu divides xu

′
and xv divides xv

′
.

The set GrA is a universal Gröbner basis of IA and has its origins in the
theory of integer programming [9]. It can be computed using [22, Algorithm
7.2], a Macaulay 2 version of which is given below.

i14 : graver = (I) -> (
R := ring I;
k := coefficientRing R;
n := numgens R;
-- construct new ring S with 2n variables
S := k[Variables=>2*n,MonomialSize=>16];
toS := map(S,R,(vars S)_{0..n-1});

Toric Hilbert Schemes 5

toR := map(R,S,vars R | matrix(R, {toList(n:1)}));
-- embed I in S
m := gens toS I;
-- construct the toric ideal of the Lawrence
-- lifting of A
i := 0;
while i < n do (

wts := join(toList(i:0),{1},toList(n-i-1:0));
wts = join(wts,wts);
m = homogenize(m,S_(n+i),wts);
i=i+1;
);

J := ideal m;
scan(gens ring J, f -> J = saturate(J,f));
-- apply the map toR to the minimal generators of J
f := matrix entries toR mingens J;
p := sortColumns f;
f_p) ;

The above piece of code first constructs a new polynomial ring S in n
more variables than R. Assume S = C[x1, . . . , xn, y1, . . . , yn]. The inclusion
map toS : R→ S embeds the toric ideal I in S and collects its generators in
the matrix m. A binomial xa − xb lies in GrA if and only if xayb − xbya is a
minimal generator of the toric ideal in S of the (d+ n)× 2n matrix

Λ(A) :=
(
A 0
In In

)
,

which is called the Lawrence lifting of A. Since u ∈ kerZ(A) ⇔ (u,−u) ∈
kerZ(Λ(A)), we use the while loop to homogenize the binomials in m with
respect to Λ(A), using the n new variables in S. This converts a binomial
xa − xb ∈ m to the binomial xayb − xbya. The ideal generated by these new
binomials is labeled J . As before, we can now successively saturate J to get
the toric ideal of Λ(A) in S. The image of the minimal generators of this toric
ideal under the map toR : S → R such that xi 7→ xi and yi 7→ 1 is precisely
the Graver basis GrA. These binomials are the entries of the matrix f and is
output by the program.

In our example GrA consists of 42 binomials.
i15 : Graver = graver I

o15 = | -cd+be -bd+ae -b2+ac -cd2+ae2 -a2d2+c3e -c4+a2bd -c4+a3e -bc3+ · · ·
1 42

o15 : Matrix R <--- R

Returning to the general case, an element b of NA is called a Graver
degree if there exists a binomial xu − xv in the Graver basis GrA such that
Au = Av = b. If b is a Graver degree then the set of monomials in Rb is
the corresponding Graver fiber. In our running example there are 37 distinct
Graver fibers. We define the ProductIdeal of A as PI := 〈xaxb : xa − xb ∈
GrA〉. This ideal is contained in every monomial ideal of HilbA and hence no
monomial in PI can be a standard monomial of a monomial A-graded ideal.
Since our purpose in constructing Graver fibers is to use them to generate all

6 M. Stillman, B. Sturmfels, and R. Thomas

monomial A-graded ideals, we will be content with listing just the monomials
in each Graver fiber that do not lie in PI. Since R is multigraded by A, we
can obtain such a presentation of a Graver fiber by simply asking for the
basis of R in degree b modulo PI.

i16 : graverFibers = (Graver) -> (
ProductIdeal := (I) -> (trim ideal(

apply(numgens I, a -> (
f := I_a; leadTerm f * (leadTerm f - f)))));

PI := ProductIdeal ideal Graver;
R := ring Graver;
new HashTable from apply(

unique degrees source Graver,
d -> d => compress (basis(d,R) % PI)));

i17 : fibers = graverFibers Graver

o17 = HashTable{{2, 2} => | ac b2 | }
{2, 8} => | ae bd |
{2, 9} => | be cd |
{3, 16} => | ae2 bde cd2 |
{4, 14} => | a2d2 c3e |
{4, 7} => | a3d bc3 |
{4, 8} => | a3e a2bd c4 |
{5, 10} => | a3ce a2b2e a2bcd ab3d c5 |
{5, 14} => | a3d2 ac3e b2c2e bc3d |
{5, 16} => | a3e2 a2cd2 ab2d2 c4e |
{5, 21} => | a2d3 bc2e2 c3de |
{5, 22} => | a2d2e abd3 c3e2 |
{5, 28} => | ad4 c2e3 |
{5, 7} => | a4d abc3 b3c2 |
{5, 8} => | a4e a3bd ac4 b2c3 |
{6, 12} => | a3c2e a2bc2d ab4e b5d c6 |
{6, 14} => | a4d2 a2c3e abc3d b4ce b3c2d |
{6, 18} => | a3ce2 a2b2e2 a2c2d2 b4d2 c5e |
{6, 21} => | a3d3 abc2e2 ac3de b3ce2 bc3d2 |
{6, 24} => | a3e3 a2cd2e abcd3 b3d3 c4e2 |
{6, 28} => | a2d4 ac2e3 b2ce3 c3d2e |
{6, 30} => | a2d2e2 acd4 b2d4 c3e3 |
{6, 35} => | ad5 bce4 c2de3 |
{6, 36} => | ad4e bd5 c2e4 |
{6, 42} => | ce5 d6 |
{6, 7} => | a5d a2bc3 b5c |
{6, 8} => | a5e a4bd a2c4 b4c2 |
{7, 14} => | a5d2 a3c3e a2bc3d b6e b5cd c7 |
{7, 21} => | a4d3 a2bc2e2 a2c3de abc3d2 b5e2 b3c2d2 |
{7, 28} => | a3d4 a2c2e3 ac3d2e b4e3 bc3d3 |
{7, 35} => | a2d5 abce4 ac2de3 b3e4 c3d3e |
{7, 42} => | ace5 ad6 b2e5 c2d2e3 |
{7, 49} => | be6 cde5 d7 |
{7, 7} => | a6d a3bc3 b7 |
{7, 8} => | a6e a5bd a3c4 b6c |
{8, 56} => | ae7 bde6 cd2e5 d8 |
{8, 8} => | a7e a6bd a4c4 b8 |

o17 : HashTable

For example, the Graver degree (8, 8) corresponds to the Graver fiber{
a7e, a6bd, a4c4, a3b2c3, a2b4c2, ab6c, b8

}
.

Toric Hilbert Schemes 7

Our Macaulay 2 code outputs only the four underlined monomials, in the
format | a7e a6bd a4c4 b8 |. The three non-underlined monomials lie in
the ProductIdeal. Graver degrees are important because of the following
result.

Lemma 1.1 ([22, Lemma 10.5]). The multidegree of any minimal gener-
ator of any ideal I in HilbA is a Graver degree.

The next step in constructing the toric Hilbert scheme is to compute
all its fixed points with respect to the scaling action of the n-dimensional
algebraic torus (C∗)n. (The torus (C∗)n acts on R by scaling variables :
λ 7→ λ · x := (λ1x1, . . . , λnxn).) These fixed points are the monomial ideals
M lying on HilbA. Every term order ≺ on the polynomial ring R gives such
a monomial ideal: M = in≺(IA), the initial ideal of the toric ideal IA with
respect to ≺. Two ideals J and J ′ are said to be torus isomorphic if J = λ ·J ′
for some λ ∈ (C∗)n. Any monomial A-graded ideal that is torus isomorphic
to an initial ideal of IA is said to be coherent. In particular, the initial ideals
of IA are coherent and they can be computed by [22, Algorithm 3.6] applied
to IA. A refinement and fast implementation can be found in the software
package TiGERS by Huber and Thomas [12].

Now we wish to compute all monomial ideals M on HilbA regardless of
whether M is coherent or not. For this we use the procedure generateAmonos
given below. This procedure takes in the Graver basis GrA and records the
numerator of the Hilbert series of IA in trueHS. It then computes the Graver
fibers of A, sorts them and calls the subroutine selectStandard to generate
a candidate for a monomial ideal on HilbA.

i18 : generateAmonos = (Graver) -> (
trueHS := poincare coker Graver;
fibers := graverFibers Graver;
fibers = apply(sort pairs fibers, last);
monos = {};
selectStandard := (fibers, J) -> (
if #fibers == 0 then (

if trueHS == poincare coker gens J
then (monos = append(monos,flatten entries mingens J));

) else (
P := fibers_0;
fibers = drop(fibers,1);
P = compress(P % J);
nP := numgens source P;
-- nP is the number of monomials not in J.
if nP > 0 then (

if nP == 1 then selectStandard(fibers,J)
else (--remove one monomial from P,take the rest.

P = flatten entries P;
scan(#P, i -> (

J1 := J + ideal drop(P,{i,i});
selectStandard(fibers, J1)))));

));
selectStandard(fibers, ideal(0_(ring Graver)));
) ;

8 M. Stillman, B. Sturmfels, and R. Thomas

The arguments to the subroutine selectStandard are the Graver fibers
given as a list of matrices and a monomial ideal J that should be included in
every A-graded ideal that we generate. The subroutine then loops through
each Graver fiber, and at each step selects a standard monomial from that
fiber and updates the ideal J by adding the other monomials in this fiber to
J . The final J output by the subroutine is the candidate ideal that is sent
back to generateAmonos. It is stored by the program if its Hilbert series
agrees with that of IA. All the monomial A-graded ideals are stored in the
list monos. Below, we ask Macaulay 2 for the cardinality of monos and its
first ten elements.

i19 : generateAmonos Graver;

i20 : #monos

o20 = 281

i21 : scan(0..9, i -> print toString monos#i)
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, c^2*e^3, b*c^2*e^2, b*c*e^4, d^6}
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, c^2*e^3, b*c^2*e^2, c*e^5, b*c*e^4, · · ·
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, c^2*e^3, b*c^2*e^2, c*e^5, b*c*e^4, · · ·
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, c^2*e^3, b*c^2*e^2, c*e^5, b*c*e^4, · · ·
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, c^2*e^3, b*c^2*e^2, d^6, a*d^5}
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, b*c^2*e^2, a*d^4, d^6}
{c*d, b*d, b^2, c^3*e, c^4, b*c^3, a*d^4, a^2*d^3, d^6}
{c*d, b*d, b^2, a^2*d^2, c^4, b*c^3, a*d^4, d^6}
{c*d, b*d, b^2, a^2*d^2, a^3*d, c^4, a*d^4, d^6}
{c*d, b*d, b^2, a^3*e, a^2*d^2, a^3*d, a*d^4, d^6}

The monomial ideals (torus-fixed points) on HilbA form the vertices of
the flip graph of A whose edges correspond to the torus-fixed curves on HilbA.
This graph was introduced in [14] and provides structural information about
HilbA. The edges emanating from a monomial ideal M can be constructed as
follows: For any minimal generator xu of M , let xv be the unique monomial
with xv 6∈ M and Au = Av. Form the wall ideal, which is generated by
xu − xv and all minimal generators of M other than xu, and let M ′ be the
initial monomial ideal of the wall ideal with respect to any term order �
for which xv � xu. It can be shown that M ′ is the unique initial monomial
ideal of the wall ideal that contains xv. If M ′ lies on HilbA then {M,M ′}
is an edge of the flip graph. We now illustrate the Macaulay 2 procedure for
computing all flip neighbors of a monomial A-graded ideal.

i22 : findPositiveVector = (m,s) -> (
expvector := first exponents s - first exponents m;
n := #expvector;
i := first positions(0..n-1, j -> expvector_j > 0);
splice {i:0, 1, (n-i-1):0}
);

i23 : flips = (M) -> (
R := ring M;
-- store generators of M in monoms
monoms := first entries generators M;
result := {};
-- test each generator of M to see if it leads to a neighbor

Toric Hilbert Schemes 9

scan(#monoms, i -> (
m := monoms_i;
rest := drop(monoms,{i,i});
b := basis(degree m, R);
s := (compress (b % M))_(0,0);
J := ideal(m-s) + ideal rest;
if poincare coker gens J == poincare coker gens M then (

w := findPositiveVector(m,s);
R1 := (coefficientRing R)[generators R, Weights=>w];
J = substitute(J,R1);
J = trim ideal leadTerm J;
result = append(result,J);
)));

result
);

The code above inputs a monomial A-graded ideal M whose minimal
generators are stored in the list monoms. The flip neighbors of M will be
stored in result. For each monomial xu in monoms we need to test whether
it yields a flip neighbor of M or not. At the i-th step of this loop, we let
m be the i-th monomial in monoms. The list rest contains all monomials in
monoms except m. We compute the standard monomial s of M of the same
degree as m. The wall ideal of m − s is the binomial ideal J generated by
m− s and the monomials in rest. We then check whether J is A-graded by
comparing its Hilbert series with that of M . (Alternately, one could check
whether M is the initial ideal of the wall ideal with respect to m � s.) If this
is the case, we use the subroutine findPositiveVector to find a unit vector
w = (0, . . . , 1, . . . , 0) such that w · s > w ·m. The flip neighbor is then the
initial ideal of J with respect to w and it is stored in result. The program
outputs the minimal generators of each flip neighbor. Here is an example.

i24 : R = QQ[a..e,Degrees=>transpose A];

i25 : M = ideal(a*e,c*d,a*c,a^2*d^2,a^2*b*d,a^3*d,c^2*e^3,
c^3*e^2,c^4*e,c^5,c*e^5,a*d^5,b*e^6);

o25 : Ideal of R

i26 : F = flips M

2 2 3 4 2 3 3 2 5 5 · · ·
o26 = {ideal (a*e, c*d, a*c, a d , a d, c , c e , c e , a*d , c*e , b* · · ·
o26 : List

i27 : #F

o27 = 4

i28 : scan(#F, i -> print toString entries mingens F_i)
{{a*e, c*d, a*c, a^2*d^2, a^3*d, c^4, c^2*e^3, c^3*e^2, a*d^5, c*e^5, · · ·
{{c*d, a*e, a*c, a^2*d^2, a^2*b*d, a^3*d, c^3*e^2, c^4*e, c^5, a*d^4, · · ·
{{a*e, c*d, a*c, a^2*d^2, a^3*d, a^2*b*d, c^2*e^3, c^3*e^2, c^4*e, c^5 · · ·
{{a*e, a*c, c*d, a^2*b*d, a^3*d, a^2*d^2, c^2*e^3, c^3*e^2, c^4*e, c^5 · · ·
It is an open problem whether the toric Hilbert scheme HilbA is con-

nected. Recent work in geometric combinatorics [19] suggests that this is
probably false for some A. This result and its implications for HilbA will

10 M. Stillman, B. Sturmfels, and R. Thomas

be discussed further in Section 2. The following theorem of Maclagan and
Thomas [14] reduces the connectivity of HilbA to a combinatorial problem.

Theorem 1.2. The toric Hilbert scheme HilbA is connected if and only if
the flip graph of A is connected.

We now have two algorithms for listing monomial ideals on HilbA. First,
there is the backtracking algorithm whose Macaulay 2 implementation was
described above. Second, there is the flip search algorithm, which starts with
any coherent monomial ideal M and then constructs the connected compo-
nent of M in the flip graph of A by carrying out local flips as above. This
procedure is also implemented in TiGERS [12]. Clearly, the two algorithms will
produce the same answer if and only if HilbA is connected. In other words,
finding an example where HilbA is disconnected is equivalent to finding a
matrix A for which the flip search algorithm produces fewer monomial ideals
than the backtracking algorithm.

2 Polyhedral Geometry

Algorithms from polyhedral geometry are essential in the study of the toric
Hilbert scheme. Consider the problem of deciding whether or not a given
monomial ideal M in HilbA is coherent. This problem gives rise to a sys-
tem of linear inequalities as follows: Let xu1 , . . . , xur be the minimal gener-
ators of M , and let xvi be the unique standard monomial with Aui = Avi.
Then M is coherent if and only if there exists a vector w ∈ Rn such that
w · (ui−vi) > 0 for i = 1, . . . , r. Thus the test for coherence amounts to solv-
ing a feasibility problem of linear programming, and there are many highly
efficient algorithms (based on the simplex algorithms or interior point meth-
ods) available for this task. For our experimental purposes, it is convenient
to use the code polarCone.m2, given in Appendix A, which is based on the
(inefficient but easy-to-implement) Fourier-Motzkin elimination method (see
[25] for a description). This code converts the generator representation of a
polyhedron to its inequality representation and vice versa. A simple example
is given in Appendix A. In particular, given a Gröbner basis G of IA, the
function polarCone will compute all the extreme rays of the Gröbner cone
{w ∈ Rn : w · (ui − vi) ≥ 0 for each xui − xvi ∈ G}.

We now show how to use Macaulay 2 to decide whether a monomial A-
graded ideal M is coherent. The first step in this calculation is to compute all
the standard monomials of M of the same degree as the minimal generators
of M . We do this using the procedure stdMonomials.

i29 : stdMonomials = (M) -> (
R := ring M;
RM := R/M;
apply(numgens M, i -> (

s := basis(degree(M_i),RM); lift(s_(0,0), R)))
);

Toric Hilbert Schemes 11

As an example, consider the following monomial A-graded ideal.
i30 : R = QQ[a..e,Degrees => transpose A];

i31 : M = ideal(a^3*d, a^2*b*d, a^2*d^2, a*b^3*d, a*b^2*d^2, a*b*d^3,
a*c, a*d^4, a*e, b^5*d, b^4*d^2, b^3*d^3, b^2*d^4,
b*d^5, b*e, c*e^5);

o31 : Ideal of R

i32 : toString stdMonomials M

o32 = {b*c^3, c^4, c^3*e, c^5, c^4*e, c^3*e^2, b^2, c^2*e^3, b*d, c^6, · · ·
From the pairs xu, xv of minimal generators xu and the corresponding

standard monomials xv, the function inequalities creates a matrix whose
columns are the vectors u− v.

i33 : inequalities = (M) -> (
stds := stdMonomials(M);
transpose matrix apply(numgens M, i -> (

flatten exponents(M_i) -
flatten exponents(stds_i))));

i34 : inequalities M

o34 = | 3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 |
| -1 1 0 3 2 1 -2 0 -1 5 4 3 2 1 1 0 |
| -3 -4 -3 -5 -4 -3 1 -2 0 -6 -5 -4 -3 -2 -1 1 |
| 1 1 2 1 2 3 0 4 -1 1 2 3 4 5 -1 -6 |
| 0 0 -1 0 -1 -2 0 -3 1 0 -1 -2 -3 -4 1 5 |

5 16
o34 : Matrix ZZ <--- ZZ

It is convenient to simplify the output of the next procedure using the
following program to divide an integer vector by the g.c.d. of its components.
We also load polarCone.m2, which is needed in decideCoherence below.

i35 : primitive := (L) -> (
n := #L-1; g := L#n;
while n > 0 do (n = n-1; g = gcd(g, L#n););
if g === 1 then L else apply(L, i -> i // g));

i36 : load "polarCone.m2"

i37 : decideCoherence = (M) -> (
ineqs := inequalities M;
c := first polarCone ineqs;
m := - sum(numgens source c, i -> c_{i});
prods := (transpose m) * ineqs;
if numgens source prods != numgens source compress prods
then false else primitive (first entries transpose m));

Let K be the cone {x ∈ Rn : g · x ≤ 0, for all columns g of ineqs }. The
command polarCone ineqs computes a pair of matrices P and Q such that
K is the sum of the cone generated by the columns of P and the subspace
generated by the columns of Q. Let m be the negative of the sum of the
columns of P . Then m lies in the cone −K. The entries in the matrix prods
are the dot products g ·m for each column g of ineqs. Since M is a monomial
A-graded ideal, it is coherent if and only if K is full dimensional, which is

12 M. Stillman, B. Sturmfels, and R. Thomas

the case if and only if no dot product g ·m is zero. This is the conditional
in the if .. then statement of decideCoherence. If M is coherent, the
program outputs the primitive representative of m and otherwise returns the
boolean false. Notice that if M is coherent, the cone −K is the Gröbner
cone corresponding to M and the vector m is a weight vector w such that
inw(IA) = M . We now test whether the ideal M from line i29 is coherent.

i38 : decideCoherence M

o38 = {0, 0, 1, 15, 18}

o38 : List

Hence, M is coherent: it is the initial ideal with respect to the weight
vector w = (0, 0, 1, 15, 18) of the toric ideal in our running example (1). Here
is one of the 55 noncoherent monomial A-graded ideals of this matrix.

i39 : N = ideal(a*e,c*d,a*c,c^3*e,a^3*d,c^4,a*d^4,a^2*d^3,c*e^5,
c^2*e^4,d^7);

o39 : Ideal of R

i40 : decideCoherence N

o40 = false

In the rest of this section, we study the connection between A-graded
ideals and polyhedral complexes defined on A. This study relates the flip
graph of the toric Hilbert scheme to the Baues graph of the configuration A.
(See [18] for a survey of the Baues problem and its relatives). Let pos(A) :=
{Au : u ∈ Rn, u ≥ 0} be the cone generated by the columns of A in Rd.
A polyhedral subdivision ∆ of A is a collection of full dimensional subcones
pos(Aσ) of pos(A) such that the union of these subcones is pos(A) and the
intersection of any two subcones is a face of each. Here Aσ := {aj : j ∈
σ ⊆ {1, . . . , n}}. It is customary to identify ∆ with the set of sets {σ :
pos(Aσ) ∈ ∆}. If every cone in the subdivision ∆ is simplicial (the number of
extreme rays of the cone equals the dimension of the cone), we say that ∆ is
a triangulation of A. The simplicial complex corresponding to a triangulation
∆ is uniquely obtained by including in ∆ all the subsets of every σ ∈ ∆. We
refer the reader to [22, §8] for more details.

For each σ ∈ ∆, let Iσ be the prime ideal that is the sum of the toric ideal
IAσ and the monomial ideal 〈xj : j 6∈ σ〉. Recall that two ideals J and J ′ are
said to be torus isomorphic if J = λ · J ′ for some λ ∈ (C∗)n. The following
theorem shows that polyhedral subdivisions of A are related to A-graded
ideals via their radicals.

Theorem 2.1 (Theorem 10.10 [22, §10]). If I is an A-graded ideal, then
there exists a polyhedral subdivision ∆(I) of A such that

√
I = ∩σ∈∆(I)Jσ

where each component Jσ is a prime ideal that is torus isomorphic to Iσ.

We say that ∆(I) supports the A-graded ideal I. When M is a monomial
A-graded ideal, ∆(M) is a triangulation of A. In particular, if M is coherent

Toric Hilbert Schemes 13

(i.e, M = inw(IA) for some weight vector w), then ∆(M) is the regular or
coherent triangulation of A induced by w [22, §8]. The coherent triangulations
of A are in bijection with the vertices of the secondary polytope of A [3], [8].

It is convenient to represent a triangulation ∆ of A by its Stanley-Reisner
ideal I∆ := 〈xi1xi2 · · ·xik : {i1, i2, . . . , ik} is a non-face of ∆〉. If M is a mono-
mial A-graded ideal, Theorem 2.1 implies that I∆(M) is the radical of M .
Hence we will represent triangulations of A by their Stanley-Reisner ideals.
As seen below, the matrix in our running example has eight distinct trian-
gulations corresponding to the eight distinct radicals of the 281 monomial
A-graded ideals computed earlier. All eight are coherent.

{{1, 2}, {2, 3}, {3, 4}, {4, 5}} ↔ 〈ac, ad, ae, bd, be, ce〉
{{1, 3}, {3, 4}, {4, 5}} ↔ 〈b, ad, ae, ce〉
{{1, 2}, {2, 4}, {4, 5}} ↔ 〈c, ad, ae, be〉
{{1, 2}, {2, 3}, {3, 5}} ↔ 〈d, ac, ae, be〉
{{1, 3}, {3, 5}} ↔ 〈b, d, ae〉
{{1, 4}, {4, 5}} ↔ 〈b, c, ae〉
{{1, 2}, {2, 5}} ↔ 〈c, d, ae〉
{{1, 5}} ↔ 〈b, c, d〉

The Baues graph of A is a graph on all the triangulations of A in which
two triangulations are adjacent if they differ by a single bistellar flip [18].
The Baues problem from discrete geometry asked whether the Baues graph
of a point configuration can be disconnected for some A. Every edge of the
secondary polytope of A corresponds to a bistellar flip, and hence the sub-
graph of the Baues graph that is induced by the coherent triangulations of A
is indeed connected: it is precisely the edge graph of the secondary polytope
of A. The Baues problem was recently settled by Santos [19] who gave an
example of a six dimensional point configuration with 324 points for which
there is an isolated (necessarily non-regular) triangulation.

Santos’ configuration would also have a disconnected flip graph and hence
a disconnected toric Hilbert scheme if it were true that every triangulation
of A supports a monomial A-graded ideal. However, Peeva has shown that
this need not be the case (Theorem 10.13 in [22, §10]). Hence, the map from
the set of all monomial A-graded ideals to the set of all triangulations of A
that sends M 7→ ∆(M) is not always surjective, and it is unknown whether
Santos’ 6× 324 configuration has a disconnected toric Hilbert scheme.

Thus, even though one cannot in general conclude that the existence of a
disconnected Baues graph implies the existence of a disconnected flip graph,
there is an important special situation in which such a conclusion is possible.
We call an integer matrix A of full row rank unimodular if the absolute value
of each of its non-zero maximal minors is the same constant. A matrix A is
unimodular if and only if every monomial A-graded ideal is square-free. For
a unimodular matrix A, the Baues graph of A coincides with the flip graph
of A. As you might expect, Santos’ configuration is not unimodular.

14 M. Stillman, B. Sturmfels, and R. Thomas

Theorem 2.2 (Lemma 10.14 [22, §10]). If A is unimodular, then each
triangulation of A supports a unique (square-free) monomial A-graded ideal.
In this case, a monomial A-graded ideal is coherent if and only if the trian-
gulation supporting it is coherent.

Using Theorem 2.2 we can compute all the triangulations of a unimodular
matrix since they are precisely the polyhedral complexes supporting mono-
mial A-graded ideals. Then we could enumerate the connected component of
a coherent monomial A-graded ideal in the flip graph of A to decide whether
the Baues/flip graph is disconnected.

Let ∆r be the standard r-simplex that is the convex hull of the r+ 1 unit
vectors in Rr+1, and let A(r, s) be the (r + s + 2) × (r + 1)(s + 1) matrix
whose columns are the products of the vertices of ∆r and ∆s. All matrices
of type A(r, s) are unimodular. From the product of two triangles we get

A(2, 2) :=

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 .

We can now use our algebraic algorithms to compute all the triangulations
of A(2, 2). Since Macaulay 2 requires the first entry of the degree of every
variable in a ring to be positive, we use the following matrix with the same
row space as A(2, 2) for our computation:

i41 : A22 =
{{1,1,1,1,1,1,1,1,1},{0,0,0,1,1,1,0,0,0},{0,0,0,0,0,0,1,1,1},
{1,0,0,1,0,0,1,0,0},{0,1,0,0,1,0,0,1,0},{0,0,1,0,0,1,0,0,1}};

i42 : I22 = toricIdeal A22

o42 = ideal (f*h - e*i, c*h - b*i, f*g - d*i, e*g - d*h, c*g - a*i, b* · · ·
o42 : Ideal of R

The ideal I22 is generated by the 2 by 2 minors of a 3 by 3 matrix of
indeterminates. This is the ideal of P2 × P2 embedded in P8 via the Segre
embedding.

i43 : Graver22 = graver I22;

1 15
o43 : Matrix R <--- R

i44 : generateAmonos(Graver22);

i45 : #monos

o45 = 108

Toric Hilbert Schemes 15

i46 : scan(0..9,i->print toString monos#i)
{f*h, c*h, f*g, e*g, c*g, b*g, c*e, c*d, b*d}
{f*h, d*h, c*h, f*g, c*g, b*g, c*e, c*d, b*d}
{d*i, f*h, d*h, c*h, c*g, b*g, c*e, c*d, b*d}
{e*i, c*h, f*g, e*g, c*g, b*g, c*e, c*d, b*d}
{e*i, d*i, c*h, e*g, c*g, b*g, c*e, c*d, b*d}
{e*i, d*i, d*h, c*h, c*g, b*g, c*e, c*d, b*d}
{f*h, c*h, f*g, e*g, c*g, b*g, c*e, a*e, c*d}
{e*i, c*h, f*g, e*g, c*g, b*g, c*e, a*e, c*d, b*d*i}
{e*i, c*h, f*g, e*g, c*g, b*g, c*e, a*e, c*d, a*f*h}
{e*i, d*i, c*h, e*g, c*g, b*g, c*e, a*e, c*d}

Thus there are 108 monomial A(2, 2)-graded ideals and decideCoherence
will check that all of them are coherent. Since A(2, 2) is unimodular, each
monomial A(2, 2)-graded ideal is square-free and is hence radical. These 108
ideals represent the 108 triangulations of A(2, 2) and we have listed ten of
them above. The flip graph (equivalently, Baues graph) of A(2, 2) is con-
nected. However, it is unknown whether the Baues graph of A(r, s) is con-
nected for all values of (r, s).

3 Local Equations

Consider the reduced Gröbner basis of a toric ideal IA for a term order w:{
xu1 − xv1 , xu2 − xv2 , . . . , xur − xvr

}
. (2)

The initial ideal M = inw(IA) = 〈xu1 , xu2 , . . . , xur 〉 is a coherent monomial
A-graded ideal. In particular, it is a (C∗)n-fixed point on the toric Hilbert
scheme HilbA. We shall explain a method, due to Peeva and Stillman [16],
for computing local equations of HilbA around such a fixed point. A variant
of this method also works for computing the local equations around a non-
coherent monomial ideal M , but that variant involves local algebra, specifi-
cally Mora’s tangent cone algorithm, which is not yet fully implemented in
Macaulay 2. See [16] for details.

We saw how to compute the flip graph of A in Section 1. The vertices
of this graph are the (C∗)n-fixed points M and its edges correspond to
the (C∗)n-fixed curves. By computing and decomposing the local equations
around each M , we get a complete description of the scheme HilbA.

The first step is to introduce a new variable zi for each binomial in our
Gröbner basis (2) and to consider the following r binomials:

xu1 − z1 · xv1 , xu2 − z2 · xv2 , . . . , xur − zr · xvr (3)

in the polynomial ring C[x, z] in n+ r indeterminates. The term order w can
be extended to an elimination term order in C[x, z] so that xui is the leading
term of xui − zi · xvi for all i. We compute the minimal first syzygies of the
monomial ideal M , and form the corresponding S-pairs of binomials in (3).
For each S-pair

lcm(xui , xuj)
xui

· (xui − zi · xvi) −
lcm(xui , xuj)

xuj
· (xuj − zj · xvj)

16 M. Stillman, B. Sturmfels, and R. Thomas

we compute a normal form with respect to (3) using the extended term order
w. The result is a binomial in C[x, z] that factors as

xα · zβ · (zγ − zδ),

where α ∈ Nn and β, γ, δ ∈ Nr. Note that this normal form is not unique
but depends on our choice of a reduction path. Let JM denote the ideal in
C[z1, . . . , zr] generated by all binomials zβ · (zγ − zδ) gotten from normal
forms of all the S-pairs considered above.

Proposition 3.1 ([16]). The ideal JM is independent of the reduction paths
chosen. It defines a subscheme of Cr isomorphic to an affine open neighbor-
hood of the point M on the toric Hilbert scheme HilbA.

We apply this technique to compute a particularly interesting affine chart
of HilbA for our running example. Consider the following set of 13 binomials:{

ae− z1bd, cd− z2be, ac− z3b
2, a2d2 − z4c

3e, a2bd− z5c
4,

a3d− z6bc
3, c2e3 − z7ad

4, c3e2 − z8abd
3, c4e− z9ab

2d2,

c5 − z10ab
3d, ce5 − z11d

6, ad5 − z12bce
4, be6 − z13d

7
}
.

If we set z1 = z2 = · · · = z13 = 1 then we get a generating set for the toric
ideal IA. The 13 monomials obtained by setting z1 = z2 = · · · = z13 = 0
generate the initial monomial ideal M = inw(IA) with respect to the weight
vector w = (9, 3, 5, 0, 0). Thus M is one of the 226 coherent monomial A-
graded ideals of our running example. The above set of 13 binomials in C[x, z]
give the universal family for HilbA around this M .

The local chart of HilbA around the point M is a subscheme of affine space
C

13 with coordinates z1, . . . , z13, whose defining equations are obtained as
follows: Extend the weight vector w by assigning weight zero to all variables
zi, so that the first term in each of the above 13 binomials is the leading
term. For each pair of binomials corresponding to a minimal syzygy of M ,
form their S-pair and then reduce it to a normal form with respect to the 13
binomials above. For instance,

S
(
c5−z10ab

3d, ce5−z11d
6
)

= z11c
4d6−z10ab

3de5 −→ b4d2e4·(z4
2z11−z1z10).

Each such normal form is a monomial in a, b, c, d, e times a binomial in
z1, . . . , z13. The set of all these binomials, in the z-variables, generates the
ideal JM of local equations of HilbA around M . In our example, JM is gener-
ated by 27 nonzero binomials. This computation can be done in Macaulay 2
using the procedure localCoherentEquations.

i47 : localCoherentEquations = (IA) -> (
-- IA is the toric ideal of A living in a ring equipped
-- with weight order w, if we are computing the local
-- equations about the initial ideal of IA w.r.t. w.
R := ring IA;

Toric Hilbert Schemes 17

w := (monoid R).Options.Weights;
M := ideal leadTerm IA;
S := first entries ((gens M) % IA);
-- Make the universal family J in a new ring.
nv := numgens R; n := numgens M;
T = (coefficientRing R)[generators R, z_1 .. z_n,

Weights => flatten splice{w, n:0},
MonomialSize=>16];

M = substitute(generators M,T);
S = apply(S, s -> substitute(s,T));
J = ideal apply(n, i ->

M_(0,i) - T_(nv + i) * S_i);
-- Find the ideal Ihilb of local equations about M:
spairs := (gens J) * (syz M);
g := forceGB gens J;
B = (coefficientRing R)[z_1 .. z_n,MonomialSize=>16];
Fones := map(B,T, matrix(B,{splice {nv:1}}) | vars B);
Ihilb := ideal Fones (spairs % g);
Ihilb
);

Suppose we wish to calculate the local equations about M = inw(IA). The
input to localCoherentEquations is the toric ideal IA living in a polynomial
ring equipped with the weight order specified by w. This is done as follows:

i48 : IA = toricIdeal A;

o48 : Ideal of R

i49 : Y = QQ[a..e, MonomialSize => 16,
Degrees => transpose A, Weights => {9,3,5,0,0}];

i50 : IA = substitute(IA,Y);

o50 : Ideal of Y

The initial ideal M is calculated in the third line of the algorithm, and S
stores the standard monomials ofM of the same degrees as the minimal gener-
ators ofM . We could have calculated S using our old procedure stdMonomials
but this involves computing the monomials in Rb for various values of b, which
can be slow on large examples. As by-products, localCoherentEquations
also gets J, the ideal of the universal family for HilbA about M , the ring T
of this ideal, and the ring B of Ihilb, which is the ideal of the affine patch
of HilbA about M . The matrix spairs contains all the S-pairs between gen-
erators of J corresponding to the minimal first syzygies of M . The command
forceGB is used to declare the generators of J to be a Gröbner basis, and
Fones is the ring map from T to B that sends each of a, b, c, d, e to one and
the z variables to themselves. The columns of the matrix (spairs % g) are
the normal forms of the polynomials in spairs with respect to the forced
Gröbner basis g and the ideal Ihilb of local equations is generated by the
image of these normal forms in the ring B under the map Fones.

i51 : JM = localCoherentEquations(IA)

· · ·
o51 = ideal (z z - z , z z - z , - z z + z , - z z + z , - z z + · · ·

1 2 3 1 2 3 4 7 2 5 8 2 1 5 · · ·

18 M. Stillman, B. Sturmfels, and R. Thomas

o51 : Ideal of B

Removing duplications among the generators:

JM = 〈z1 − z10z11, z2 − z4z7, z2 − z5z8, z2 − z11z12, z2 − z1z11z13,
z3 − z1z2, z3 − z5z9, z4 − z1z5, z6 − z3z5, z6 − z1z2z5, z7 − z1z10, z8 − z1z7,
z9− z1z8, z12− z1z13, z1z2− z5z9, z1z2− z1z5z8, z1z2− z2

1z4z10, z1z2− z2
1z5z7,

z1z2 − z1z11z12, z1z2 − z2z10z11, z
3
1z4 − z3z11, z1z5z8 − z4z8, z2z10 − z1z12,

z3z4 − z1z6, z3z7 − z2z8, z3z8 − z2z9, z3z10 − z2z7〉.
Notice that there are many generators of JM that have a single vari-

able as one of its terms. Using these generators we can remove variables
from other binomials. This is done in Macaulay 2 using the subroutine
removeRedundantVariables, which is the main ingredient of the package
minPres.m2 for computing the minimal presentations of polynomial quotient
rings. Both removeRedundantVariables and minPres.m2 are explained in
Appendix B. The command removeRedundantVariables applied to an ideal
in a polynomial ring (not quotient ring) creates a ring map from the ring to
itself that sends the redundant variables to polynomials in the non-redundant
variables and the non-redundant variables to themselves. Applying this to our
ideal JM we obtain the following simplifications.

i52 : load "minPres.m2";

i53 : G = removeRedundantVariables JM

3 2 4 3 2 4 3 2 · · ·
o53 = map(B,B,{z z , z z z , z z z , z z z , z , z z z , z · · ·

10 11 5 10 11 5 10 11 5 10 11 5 5 10 11 10 · · ·
o53 : RingMap B <--- B

i54 : ideal gens gb(G JM)

3 2 2
o54 = ideal(z z z - z z z)

5 10 11 10 11 13

o54 : Ideal of B

Thus our affine patch of HilbA has the coordinate ring

C[z1, z2, . . . , z13]/JM ' C[z5, z10, z11, z13]
〈z5z3

10z
2
11 − z10z2

11z13〉
=

C[z5, z10, z11, z13]
〈(z5z2

10 − z13)z10z2
11〉

.

Hence, we see immediately that there are three components through the point
M on HilbA. The restriction of the coherent component to the affine neigh-
borhood of M on HilbA is defined by the ideal quotient (JM : (z1z2 · · · z13)∞)
and hence the first of the above components is an affine patch of the coherent
component. Locally near M it is given by the single equation z5z

2
10− z13 = 0

in A4. It is smooth and, as expected, has dimension three. The second com-
ponent, z10 = 0, is also of dimension three and is smooth at M . The third
component, given by z2

11 = 0 is more interesting. It has dimension three as
well, but is not reduced. Thus we have proved the following result.

Toric Hilbert Schemes 19

Proposition 3.2. The toric Hilbert scheme HilbA of the matrix

A =
(

1 1 1 1 1
0 1 2 7 8

)
is not reduced.

We can use the ring map G from above to simplify J so as to involve only
the four variables z5, z10, z11 and z13.

i55 : CX = QQ[a..e, z_5,z_10,z_11,z_13, Weights =>
{9,3,5,0,0,0,0,0,0}];

i56 : F = map(CX, ring J, matrix{{a,b,c,d,e}} |
substitute(G.matrix,CX))

3 2 4 3 · · ·
o56 = map(CX,T,{a, b, c, d, e, z z , z z z , z z z , z z z , z · · ·

10 11 5 10 11 5 10 11 5 10 11 · · ·
o56 : RingMap CX <--- T

Applying this map to J we get the ideal J1,
i57 : J1 = F J

3 2 2 4 3 · · ·
o57 = ideal (c*d - b*e*z z , a*e - b*d*z z z , a*c - b z z z , a · · ·

10 11 5 10 11 5 10 11 · · ·
o57 : Ideal of CX

and adding the ideal 〈z2
11〉 to J1 we obtain the universal family for the non-

reduced component of HilbA about M .
i58 : substitute(ideal(z_11^2),CX) + J1

2 3 2 2 4 · · ·
o58 = ideal (z , c*d - b*e*z z , a*e - b*d*z z z , a*c - b z z z · · ·

11 10 11 5 10 11 5 10 · · ·
o58 : Ideal of CX

In the rest of this section, we present an interpretation of the ideal JM in
terms of the combinatorial theory of integer programming. See, for instance,
[22, §4] or [24] for the relevant background. Our reduced Gröbner basis (2)
is the minimal test set for the family of integer programs

Minimize w · u subject to A · u = b and u ∈ Nn, (4)

where A ∈ Nd×n and w ∈ Zn are fixed and b ranges over Nd. If u′ ∈ Nn is
any feasible solution to (4), then the corresponding optimal solution u ∈ Nn
is computed as follows: the monomial xu is the unique normal form of xu

′

modulo the Gröbner basis (2).
Suppose we had reduced xu

′
modulo the binomials (3) instead of (2). Then

the output has a z-factor that depends on our choice of reduction path. To
be precise, suppose the reduction path has length m and at the j-th step we

20 M. Stillman, B. Sturmfels, and R. Thomas

had used the reduction xuµj → zµj · x
vµj . Then we would obtain the normal

form
zµ1zµ2zµ3 · · · zµm · xu.

Reduction paths can have different lengths. If we take another path that has
length m′ and uses xuνj → zνj ·x

vνj at the j-th step, then the output would
be

zν1zν2zν3 · · · zνm′ · x
u.

Theorem 3.3. The ideal JM of local equations on HilbA is generated by the
binomials

zµ1zµ2zµ3 · · · zµm − zν1zν2zν3 · · · zνm′
each encoding a pair of distinct reduction sequences from a feasible solution
of an integer program of the type (4) to the corresponding optimal solution
using the minimal test set in (2).

Proof. The given ideal is contained in JM because its generators are differ-
ences of monomials arising from the possible reduction paths of lcm(xui , xuj),
for 1 ≤ i, j ≤ r. Conversely, any reduction sequence can be transformed into
an equivalent reduction sequence using S-pair reductions. This follows from
standard arguments in the proof of Buchberger’s criterion [5, §2.6, Theorem
6], and it implies that the binomials zµ1 · · · zµm − zν1 · · · zνm′ are C[z]-linear
combinations of the generators of JM . ut

A given feasible solution of an integer program (4) usually has many
different reduction paths to the optimal solution using the reduced Gröbner
basis (2). For our matrix 1 and cost vector w = (9, 3, 5, 0, 0), the monomial
a2bde6 encodes the feasible solution (2, 1, 0, 1, 6) of the integer program

Minimize w · u subject to A · u =
(

10
56

)
and u ∈ N5.

There are 19 different paths from this feasible solution to the optimal solution
(0, 3, 0, 3, 4) encoded by the monomial b3d3e4. The generating function for
these paths is:

z2
1 + 3z1z

2
2z5z7 + 2z1z2z5z

2
7z12 + 2z1z2z5z8

+ 2z1z2z12z13 + z1z5z9 + z3
2z4z5z

2
7 + z3

2z4z13 + z3
2z5z11

+ 2z2z3z5z7 + z3z5z
2
7z12 + z3z5z8 + z3z12z13.

The difference of any two monomials in this generating function is a valid
local equation for the toric Hilbert scheme of (1). For instance, the binomial
z3z5z

2
7z12−z3z12z13 lies in JM , and, conversely, JM is generated by binomials

obtained in this manner.
The scheme structure of JM encodes obstructions to making certain re-

ductions when solving our family of integer programs. For instance, the vari-
able z3 is a zero-divisor modulo JM . If we factor it out from the binomial

Toric Hilbert Schemes 21

z3z5z
2
7z12−z3z12z13 ∈ JM , we get z5z

2
7z12−z12z13 , which does not lie in JM .

Thus there is no monomial ai1bi2ci3di4ei5 for which both the paths z5z
2
7z12

and z12z13 are used to reach the optimum. It would be a worthwhile combi-
natorial project to study the path generating functions and their relation to
the ideal JM in more detail.

It is instructive to note that the binomials zµ1zµ2 · · · zµm − zν1zν2 · · · zνm′
in Theorem 3.3 do not form a vector space basis for the ideal JM . We demon-
strate this for the lexicographic Gröbner basis (with a � b � c � d � e) of
the toric ideal defining the rational normal curve of degree 4. In this case, we

can take A =
(

1 1 1 1 1
0 1 2 3 4

)
and the universal family in question is :

{
ac− z1b

2, ad− z2bc, ae− z3c
2, bd− z4c

2, be− z5cd, ce− z6d
2
}
.

The corresponding ideal of local equations is JM = 〈z3− z2z5, z2− z1z4, z5−
z4z6〉, from which we see that M is a smooth point of HilbA. The binomial
z1z5−z1z4z6 lies in JM but there is no monomial that has the reduction path
z1z5 or z5z1 to optimality. Indeed, any monomial that admits the reductions
z1z5 or z5z1 must be divisible by either ace or abe. The path generating
functions for these two monomials are

abe → (z3 + z1z4z5 + z2z5) · bc2

ace → (z3 + z1z4z5 + z2z4z6) · c3.

Thus every reduction to optimality using z1 and z5 must also use z4, and we
conclude that z1z5 − z1z4z6 is not in the C-span of the binomials listed in
Theorem 3.3.

4 The Coherent Component of the Toric Hilbert
Scheme

In this section we study the component of the toric Hilbert scheme HilbA that
contains the point corresponding to the toric ideal IA. An A-graded ideal is
coherent if and only if it is isomorphic to an initial ideal of IA under the action
of the torus (C∗)n. All coherent A-graded ideals lie on the same component
of HilbA as IA. We will show that this component need not be normal, and
we will describe how its local and global equations can be computed using
Macaulay 2. Every term order for the toric ideal IA can be realized by a weight
vector that is an element in the lattice N = HomZ(kerZ(A),Z) ' Z

n−d.
Two weight vectors w and w′ in N are considered equivalent if they define
the same initial ideal inw(IA) = inw′(IA). These equivalence classes are the
relatively open cones of a projective fan ΣA called the Gröbner fan of IA [15],
[23]. This fan lies in Rn−d, the real vector space spanned by the lattice N .

22 M. Stillman, B. Sturmfels, and R. Thomas

Theorem 4.1. The toric ideal IA lies on a unique irreducible component of
the toric Hilbert scheme HilbA, called the coherent component. The normal-
ization of the coherent component is the projective toric variety defined by
the Gröbner fan of IA.

Proof. The divisor at infinity on the toric Hilbert scheme HilbA consists of all
points at which at least one of the local coordinates (around some monomial
A-graded ideal) is zero. This is a proper closed codimension one subscheme
of HilbA, parametrizing all those A-graded ideals that contain at least one
monomial. The complement of the divisor at infinity in HilbA consists of
precisely the orbit of IA under the action of the torus (C∗)n. This is the
content of [22, Lemma 10.12].

The closure of the (C∗)n-orbit of IA is a reduced and irreducible compo-
nent of HilbA. It is reduced because IA is a smooth point on HilbA, as can be
seen from the local equations, and it is irreducible since (C∗)n is a connected
group. It is a component of HilbA because its complement lies in a divisor.
We call this irreducible component the coherent component of HilbA.

Identifying (C∗)n with HomZ(Zn,C∗), we note that the stabilizer of IA
consists of those linear forms w that restrict to zero on the kernel of A.
Therefore the coherent component is the closure in HilbA of the orbit of the
point IA under the action of the torus N ⊗ C∗ = HomZ(kerZ(A),C∗). The
(N⊗C∗)-fixed points on this component are precisely the coherent monomial
A-graded ideals, and the same holds for the toric variety of the Gröbner fan.

Fix a maximal cone σ in the Gröbner fan ΣA, and let M = 〈xu1 , . . . , xur 〉
be the corresponding (monomial) initial ideal of IA. As before we write

{xu1 − z1 · xv1 , xu2 − z2 · xv2 , . . . , xur − zr · xvr}

for the universal family arising from the corresponding reduced Gröbner basis
of IA. Let JM be the ideal in C[z1, z2, . . . , zr] defining this family.

The restriction of the coherent component to the affine neighborhood of
M on HilbA is defined by JM : (z1z2 · · · zr)∞. It then follows from our com-
binatorial description of the ideal JM that this ideal quotient is a binomial
prime ideal. In fact, it is the ideal of algebraic relations among the Lau-
rent monomials xu1−v1 , . . . , xur−vr . We conclude that the restriction of the
coherent component to the affine neighborhood of M on HilbA equals

Spec C
[
xu1−v1 , xu2−v2 , . . . , xur−vr

]
. (5)

The abelian group generated by the vectors u1 − v1, . . . , ur − vr equals
kerZ(A) = HomZ(N,Z). This follows from [21, Lemma 12.2] because the
binomials xui − xvi generate the toric ideal IA. The cone generated by the
vectors u1 − v1, . . . , ur − vr is precisely the polar dual σ∨ to the Gröbner
cone σ. This follows from equation (2.6) in [21]. We conclude that the nor-
malization of the affine variety (5) is the normal affine toric variety

Spec C
[
kerZ(A) ∩ σ∨

]
. (6)

Toric Hilbert Schemes 23

The normalization morphism from (6) to (5) maps the identity point in
the toric variety (6) to the point IA in the affine chart (5) of the toric Hilbert
scheme HilbA. Clearly, this normalization morphism is equivariant with re-
spect to the action by the torus N ⊗C∗. These two properties hold for every
maximal cone σ of the Gröbner fan ΣA. Hence there exists a unique N ⊗C∗-
equivariant morphism φ from the projective toric variety associated with ΣA
onto the coherent component of HilbA, such that φ maps the identity point
to the point IA on HilbA, and φ restricts to the normalization morphism (6)
→ (5) on each affine open chart. We conclude that φ is the desired normal-
ization map from the projective toric variety associated with the Gröbner fan
of IA onto the coherent component of the toric Hilbert scheme HilbA. ut

We now present an example that shows that the coherent component of
HilbA need not be normal. This example is derived from the matrix that ap-
pears in Example 3.15 of [10]. This example is also mentioned in [17] without
details. Let d = 4 and n = 7 and fix the matrix

A =

1 1 1 1 1 1 1
0 6 7 5 8 4 3
3 7 2 0 7 6 1
6 5 2 6 5 0 0

 . (7)

The lattice N = HomZ(kerZ(A),Z) is three-dimensional. The toric ideal
IA is minimally generated by 30 binomials of total degree between 6 and 93.

i59 : A = {{1,1,1,1,1,1,1},{0,6,7,5,8,4,3},{3,7,2,0,7,6,1},
{6,5,2,6,5,0,0}};

i60 : IA = toricIdeal A

2 3 3 2 2 4 4 8 4 4 3 6 7 2 4 4 · · ·
o60 = ideal (a c e - b*d f , a c*d*e f - b g , d e f - b c g , a*b c · · ·
o60 : Ideal of R

We fix the weight vector w = (0, 0, 276, 220, 0, 0, 215) in N and compute
the initial ideal M = inw(IA). This initial ideal has 44 minimal generators.

i61 : Y = QQ[a..g, MonomialSize => 16,
Weights => {0,0,276,220,0,0,215},
Degrees =>transpose A];

i62 : IA = substitute(IA,Y);

o62 : Ideal of Y

i63 : M = ideal leadTerm IA

2 3 8 4 7 2 4 4 7 3 5 4 3 5 2 6 5 4 3 3 1 · · ·
o63 = ideal (a c e, b g , b c g , a*b c f , b c d f , a b c g , a b c · · ·
o63 : Ideal of Y

Proposition 4.2. The three dimensional affine variety (5), for the initial
ideal M with respect to w = (0, 0, 276, 220, 0, 0, 215) of the toric ideal of A in
(7), is not normal.

24 M. Stillman, B. Sturmfels, and R. Thomas

Proof. The universal family for the toric Hilbert scheme HilbA at M is:

{ a2e15g18 − z1b
3c6d10f16, b13d15f16 − z2a

8ce21g14,

c59d57f110 − z3e
92g134, ac14d11f23 − z4be

19g29,

b7c2g4 − z5d
4e3f6, . . . , bc34d32f62 − z44e

53g76}.

The semigroup algebra in (5) is generated by 44 Laurent monomials gotten
from this family. It turns out that the first four monomials suffice to gen-
erate the semigroup. In other words, for all j ∈ {5, 6, . . . , 44} there exist
i1, i2, i3, i4 ∈ N such that zj − zi11 z

i2
2 z

i3
3 z

i4
4 ∈ JM : (z1 · · · z44)∞. Hence the

semigroup algebra in (5) is:

C

[a2e15g18

b3c6d10f16
,
b13d15f16

a8ce21g14
,
c59d57f110

e92g134
,
ac14d11f23

be19g29

]
' C[z1, z2, z3, z4]
〈z5

1z2z3 − z2
4〉
.

This algebra is not integrally closed, since a toric hypersurface is normal if
and only if at least one of the two monomials in the defining equation is
square-free. Its integral closure in C[kerZ(A)] is generated by the Laurent
monomial

z4

z2
1

= (z1z2z3)
1
2 =

b5c26d31f55

a3e49g65
. (8)

Hence the affine chart (6) of the toric variety of the Gröbner fan of IA is the
spectrum of the normal domain C[z1, z2, z3, y]/〈z1z2z3 − y2〉, where y maps
to (8). ut

We now examine the local equations of HilbA about M for this example.
i64 : JM = localCoherentEquations(IA)

· · ·
o64 = ideal (z z - z , z z - z , z z - z , z z - z , z z - z , z · · ·

1 2 3 1 2 3 1 5 4 1 3 6 1 3 6 1 · · ·
o64 : Ideal of B

i65 : G = removeRedundantVariables JM;

o65 : RingMap B <--- B

i66 : toString ideal gens gb(G JM)

o66 = ideal(z_32*z_42^2*z_44-z_37^2*z_42,z_32^3*z_35*z_37^2-z_42^2*z_4 · · ·
This ideal has six generators and decomposing it we see that there are

five components through the monomial ideal M on this toric Hilbert scheme.
They are defined by the ideals:

– 〈z32z42z44 − z2
37, z

4
32z35 − z42, z

3
32z35z

2
37 − z2

42z44, z
2
32z35z

4
37 − z3

42z
2
44,

z32z35z
6
37 − z4

42z
3
44, z35z

8
37 − z5

42z
4
44〉

– 〈z44, z37〉
– 〈z37, z

2
42〉

– 〈z42, z35〉

Toric Hilbert Schemes 25

– 〈z42, z
3
32〉.

All five components are three dimensional. The first component is an affine
patch of the coherent component and two of the components are not reduced.
Let K be the first of these ideals.

i67 : K = ideal(z_32*z_42*z_44-z_37^2,z_32^4*z_35-z_42,
z_32^3*z_35*z_37^2-z_42^2*z_44,z_32^2*z_35*z_37^4-z_42^3*z_44^2,
z_32*z_35*z_37^6-z_42^4*z_44^3,z_35*z_37^8-z_42^5*z_44^4);

o67 : Ideal of B

Applying removeRedundantVariables to K we see that the affine patch
of the coherent component is, locally at M , a non-normal hypersurface sin-
gularity (agreeing with (8)). The labels on the variables depend on the order
of elements in the initial ideal M computed by Macaulay 2 in line i61.

i68 : GG = removeRedundantVariables K;

o68 : RingMap B <--- B

i69 : ideal gens gb (GG K)

5 2
o69 = ideal(z z z - z)

32 35 44 37

o69 : Ideal of B

There is a general algorithm due to de Jong [6] for computing the normal-
ization of any affine variety. In the toric case, the problem of normalization
amounts to computing the minimal Hilbert basis of a given convex rational
polyhedral cone [20]. An efficient implementation can be found in the software
package Normaliz by Bruns and Koch [4].

Our computational study of the toric Hilbert scheme in this chapter was
based on local equations rather than global equations (arising from a pro-
jective embedding of HilbA), because the latter system of equations tends
to be too large for most purposes. Nonetheless, they are interesting. In the
remainder of this section, we present a canonical projective embedding of the
coherent component of HilbA.

Let G1, G2, G3, . . . , Gs denote all the Graver fibers of the matrix A. In
Section 1 we showed how to compute them in Macaulay 2. Each set Gi
consists of the monomials in C[x1, . . . , xn] that have a fixed Graver degree.
Consider the set G := G1G2G3 · · ·Gs that consists of all monomials that
are products of monomials, one from each of the distinct Graver fibers. Let
t denote the cardinality of G. We introduce an extra indeterminate z, and
we consider the N-graded semigroup algebra C[zG], which is a subalgebra of
C[x1, . . . , xn, z]. The grading of this algebra is deg(z) = 1 and deg(xi) = 0.
Labeling the elements of G with indeterminates yi, we can write

C[zG] = C[y1, y2, . . . , yt]/PA,

where PA is a homogeneous toric ideal associated with a configuration of t
vectors in Zn+1. We note that the torus (C∗)n acts naturally on C[zG].

26 M. Stillman, B. Sturmfels, and R. Thomas

Example 4.3. Let n = 4, d = 2 and A =
(

3 2 1 0
0 1 2 3

)
, so that IA is the ideal

of the twisted cubic curve. There are five Graver fibers:
i70 : A = {{1,1,1,1},{0,1,2,3}};

i71 : I = toricIdeal A;

o71 : Ideal of R

i72 : Graver = graver I;

1 5
o72 : Matrix R <--- R

i73 : fibers = graverFibers Graver;

i74 : peek fibers

o74 = HashTable{{2, 2} => | ac b2 | }
{2, 3} => | ad bc |
{2, 4} => | bd c2 |
{3, 3} => | a2d abc b3 |
{3, 6} => | ad2 bcd c3 |

The set G = G1G2G3G4G5 consists of 22 monomials of degree 14.
i75 : G = trim product(values fibers, ideal)

5 5 4 3 5 5 3 4 4 2 2 4 3 4 4 2 6 4 4 · · ·
o75 = ideal (a b*c*d , a b d , a c d , a b c d , a b c*d , a b d , a b · · ·
o75 : Ideal of R

i76 : numgens G

o76 = 22

We introduce a polynomial ring in 22 variables y1, y2, . . . , y22, and we
compute the ideal PA. It is generated by 180 binomial quadrics.

i77 : z = symbol z;

i78 : S = QQ[a,b,c,d,z];

i79 : zG = z ** substitute(gens G, S);

1 22
o79 : Matrix S <--- S

i80 : R = QQ[y_1 .. y_22];

i81 : F = map(S,R,zG)

5 5 4 3 5 5 3 4 4 2 2 4 3 4 4 2 6 · · ·
o81 = map(S,R,{a b*c*d z, a b d z, a c d z, a b c d z, a b c*d z, a b · · ·
o81 : RingMap S <--- R

i82 : PA = trim ker F

2 · · ·
o82 = ideal (y - y y , y y - y y , y y - y y , y y - · · ·

21 20 22 19 21 18 22 18 21 17 22 17 21 · · ·
o82 : Ideal of R

Toric Hilbert Schemes 27

These equations define a toric surface of degree 30 in projective 21-space.
i83 : codim PA

o83 = 19

i84 : degree PA

o84 = 30

The surface is smooth, but there are too many equations and the codi-
mension is too large to use the Jacobian criterion for smoothness [7, §16.6]
directly. Instead we check smoothness for each open set yi 6= 0.

i85 : Aff = apply(1..22, v -> (
K = substitute(PA,y_v => 1);
FF = removeRedundantVariables K;
ideal gens gb (FF K)));

i86 : scan(Aff, i -> print toString i);
ideal()
ideal()
ideal()
ideal(y_1^4*y_5*y_21-1)
ideal(y_1^4*y_6^6*y_21-1)
ideal()
ideal(y_1^2*y_11^2*y_17-1)
ideal(y_1^3*y_9^2*y_21^2-1)
ideal(y_6^3*y_21-y_10,y_1*y_10^3-y_6^2,y_1*y_6*y_10^2*y_21-1)
ideal(y_6*y_15-1,y_2*y_15^2-y_6*y_14,y_6^2*y_14-y_2*y_15)
ideal()
ideal(y_11*y_13-1,y_1^2*y_21^3-y_13^2)
ideal(y_1^2*y_14^3*y_21^3-1)
ideal(y_10^2*y_21-1,y_1*y_15^4-y_10^3)
ideal()
ideal(y_11*y_20-1,y_3*y_20^2-y_11*y_17,y_11^2*y_17-y_3*y_20)
ideal(y_11*y_18*y_21-1,y_1*y_21^3-y_11*y_18^2,y_11^2*y_18^3-y_1*y_21^2)
ideal(y_1*y_19^4*y_21^4-1)
ideal(y_15*y_22-1)
ideal()
ideal(y_20*y_22-1)
ideal()

By examining these local equations, we see that HilbA is smooth, and
also that there are eight fixed points under the action of the 2-dimensional
torus. They correspond to the variables y1, y2, y3, y6, y11, y15, y20 and y22. By
setting any of these eight variables to 1 in the 180 quadrics above, we obtain
an affine variety isomorphic to the affine plane.

Theorem 4.4. The coherent component of the toric Hilbert scheme HilbA
is isomorphic to the projective spectrum Proj C[zG] of the algebra C[zG].

Proof. The first step is to define a morphism from HilbA to the (t − 1)-
dimensional projective space P(G) = Proj C[y1, y2, . . . , yt]. Consider any
point I on HilbA. We intersect the ideal I with the finite-dimensional vec-
tor space CGi, consisting of all homogeneous polynomials in C[x1, . . . , xn]
that lie in the i-th Graver degree. The definition of A-graded ideal implies
that I ∩ CGi is a linear subspace of codimension 1 in CGi. We represent

28 M. Stillman, B. Sturmfels, and R. Thomas

this subspace by an equation gi(I) =
∑
u∈Gi cux

u , which is unique up to
scaling. Taking the product of these polynomials for i = 1, . . . , t, we get a
unique (up to scaling) polynomial that is supported on G = G1G2 · · ·Gt. The
map I 7→ g1(I)g2(I) · · · gt(I) defines a morphism from HilbA to P(G). This
morphism is equivariant with respect to the (C∗)n-action on both schemes.

Consider the restriction of this equivariant morphism to the coherent com-
ponent of the toric Hilbert scheme. It maps the (C∗)n-orbit of the toric ideal
IA into the subvariety Proj C[zG] of P(G). This inclusion is an isomorphism
onto the dense torus, as the dimension of the Newton polytope of

g(IA) =
t∏
i=1

(
∑
u∈Gi

xu)

equals the dimension of the kernel of A. Equivalently, the stabilizer of g(IA)
in (C∗)n consists only of those one-parameter subgroups w that restrict to
zero on the kernel of A.

To show that our morphism is an isomorphism between the coherent com-
ponent and Proj C[zG], we consider the affine chart around an initial mono-
mial ideal M = inw(IA). The polynomial g(M) is a monomial, namely, it
is the product of all standard monomials whose degree is a Graver degree.
Moreover, g(M) is the leading monomial of g(IA) with respect to the weight
vector w. The Newton polytope of g(IA) is the Minkowski sum of the Newton
polytopes of the polynomials g1(IA), . . . , gt(IA), and it is a state polytope
for IA, by [22, Theorem 7.5].

Let g(M) = xq, and let σ be the cone of the Gröbner fan ΣA that has w in
its interior. Then σ coincides with the normal cone at the vertex q of the state
polytope described above [22, §3]. Consider the restriction of our morphism
to the affine chart around M of the coherent component, as described in (5).
This restriction defines an isomorphism onto the variety

Spec C[xp−q : xp ∈ G] (9)

On the other hand, the semigroup algebra in (9) is isomorphic to that in (5)
because each pair of vectors {ui, vi} seen in the reduced Gröbner basis lies in
one of the Graver fibers Gj . Hence our morphism restricts to an isomorphism
from the affine chart around M of the coherent component onto (9). Finally,
note that (9) is the principal affine open subset of Proj C[zG] defined by the
coordinate xq. Hence we get an isomorphism between the coherent component
of HilbA and Proj C[zG]. ut

Appendix A. Fourier-Motzkin Elimination

We now give the Macaulay 2 code for converting the generator/inequality
representation of a rational convex polyhedron to the other. It is based on

Toric Hilbert Schemes 29

the Fourier-Motzkin elimination procedure for eliminating a variable from a
system of inequalities [25]. This code was written by Greg Smith.

Given any cone C ⊂ Rd, the polar cone of C is defined to be

C∨ = {x ∈ Rd | x · y ≤ 0, for all y ∈ C}.

For a d×nmatrix Z, define cone(Z) = {Zx | x ∈ Rn≥0} ⊂ Rd, and affine(Z) =
{Zx | x ∈ Rn} ⊂ Rd. For two integer matrices Z and H, both having d rows,
polarCone(Z,H) returns a list of two integer matrices {A,E} such that

cone(Z) + affine(H) = {x ∈ Rd | Atx ≤ 0, Etx = 0}.

Equivalently, (cone(Z) + affine(H))∨ = cone(A) + affine(E).
We now describe each routine in the package polarCone.m2. We have

simplified the code for readability, sometimes at the cost of efficiency. We
start with three simple subroutines: primitive, toZZ, and rotateMatrix.

The routine primitive takes a list of integers L, and divides each element
of this list by their greatest common denominator.

i87 : code primitive

o87 = -- polarCone.m2:16-20
primitive = (L) -> (

n := #L-1; g := L#n;
while n > 0 do (n = n-1; g = gcd(g, L#n);

if g === 1 then n = 0);
if g === 1 then L else apply(L, i -> i // g));

The routine toZZ converts a list of rational numbers to a list of integers,
by multiplying by their common denominator.

i88 : code toZZ

o88 = -- polarCone.m2:28-32
toZZ = (L) -> (

d := apply(L, e -> denominator e);
R := ring d#0; l := 1_R;
scan(d, i -> (l = (l*i // gcd(l,i))));
apply(L, e -> (numerator(l*e))));

The routine rotateMatrix is a kind of transpose. Its input is a matrix,
and its output is a matrix of the same shape as the transpose. It places the
matrix in the form so that in the routine polarCone, computing a Gröbner
basis will do the Gaussian elimination that is needed.

i89 : code rotateMatrix

o89 = -- polarCone.m2:41-43
rotateMatrix = (M) -> (

r := rank source M; c := rank target M;
matrix table(r, c, (i,j) -> M_(c-j-1, r-i-1)));

30 M. Stillman, B. Sturmfels, and R. Thomas

The procedure of Fourier-Motzkin elimination as presented by Ziegler in
[25] is used, together with some heuristics that he presents as exercises. The
following, which is a kind of S-pair criterion for inequalities, comes from
Exercise 2.15(i) in [25].

The routine isRedundant determines if a row vector (inequality) is redun-
dant. Its input argument V is the same input that is used in fourierMotzkin:
it is a list of sets of integers. Each entry contains indices of the original rays
that do not vanish at the corresponding row vector. vert is a set of integers;
the original rays for the row vector in question. A boolean value is returned.

i90 : code isRedundant

o90 = -- polarCone.m2:57-65
isRedundant = (V, vert) -> (

-- the row vector is redundant iff ’vert’ contains an
-- entry in ’V’.
x := 0; k := 0;
numRow := #V; -- equals the number of inequalities
while x < 1 and k < numRow do (

if isSubset(V#k, vert) then x = x+1;
k = k+1;);

x === 1);

The main work horse of polarCone.m2 is the subroutine fourierMotzkin,
which eliminates the first variable in the inequalities A using the double de-
scription version of Fourier-Motzkin elimination. The set A is a list of lists
of integers, each entry corresponding to a row vector in the system of in-
equalities. The argument V is a list of sets of integers. Each entry contains
the indices of the original rays that do not vanish at the corresponding row
vector in A. Note that this set is the complement of the set Vi appearing in
exercise 2.15 in [25]. The argument spot is the integer index of the variable
being eliminated.

The routine returns a list {projA,projV} where projA is a list of lists of
integers. Each entry corresponds to a row vector in the projected system of
inequalities. The list projV is a list of sets of integers. Each entry contains
indices of the original rays that do not vanish at the corresponding row vector
in projA.

i91 : code fourierMotzkin

o91 = -- polarCone.m2:89-118
fourierMotzkin = (A, V, spot) -> (

-- initializing local variables
numRow := #A; -- equal to the length of V
numCol := #(A#0); pos := {};
neg := {}; projA := {};
projV := {}; k := 0;
-- divide the inequalities into three groups.
while k < numRow do (

if A#k#0 < 0 then neg = append(neg, k)
else if A#k#0 > 0 then pos = append(pos, k)
else (projA = append(projA, A#k);

projV = append(projV, V#k););
k = k+1;);

Toric Hilbert Schemes 31

-- generate new irredundant inequalities.
scan(pos, i -> scan(neg, j -> (vert := V#i + V#j;

if not isRedundant(projV, vert)
then (iRow := A#i; jRow := A#j;

iCoeff := - jRow#0;
jCoeff := iRow#0;
a := iCoeff*iRow + jCoeff*jRow;
projA = append(projA, a);
projV = append(projV, vert););)));

-- don’t forget the implicit inequalities ’-t <= 0’.
scan(pos, i -> (vert := V#i + set{spot};

if not isRedundant(projV, vert) then (
projA = append(projA, A#i);
projV = append(projV, vert););));

-- remove the first column
projA = apply(projA, e -> e_{1..(numCol-1)});
{projA, projV});

As mentioned above, polarCone takes two matrices Z, H, both having d
rows, and outputs a pair of matrices A, E such that (cone(Z)+affine(H))∨ =
cone(A) + affine(E).

i92 : code(polarCone,Matrix,Matrix)

o92 = -- polarCone.m2:137-192
polarCone(Matrix, Matrix) := (Z, H) -> (

R := ring source Z;
if R =!= ring source H then error ("polarCone: " |

"expected matrices over the same ring");
if rank target Z =!= rank target H then error (

"polarCone: expected matrices to have the " |
"same number of rows");

if (R =!= ZZ) then error ("polarCone: expected " |
"matrices over ’ZZ’");

-- expressing ’cone(Y)+affine(B)’ as ’{x : Ax <= 0}’
Y := substitute(Z, QQ); B := substitute(H, QQ);
if rank source B > 0 then Y = Y | B | -B;
n := rank source Y; d := rank target Y;
A := Y | -id_(QQ^d);
-- computing the row echelon form of ’A’
A = gens gb rotateMatrix A;
L := rotateMatrix leadTerm A;
A = rotateMatrix A;
-- find pivots
numRow = rank target A; -- numRow <= d
i := 0; pivotCol := {};
while i < numRow do (j := 0;

while j < n+d and L_(i,j) =!= 1_QQ do j = j+1;
pivotCol = append(pivotCol, j);
i = i+1;);

-- computing the row-reduced echelon form of ’A’
A = ((submatrix(A, pivotCol))^(-1)) * A;
-- converting ’A’ into a list of integer row vectors
A = entries A;
A = apply(A, e -> primitive toZZ e);
-- creating the vertex list ’V’ for double description
-- and listing the variables ’T’ which remain to be
-- eliminated
V := {}; T := toList(0..(n-1));
scan(pivotCol, e -> (if e < n then (T = delete(e, T);

32 M. Stillman, B. Sturmfels, and R. Thomas

V = append(V, set{e});)));
-- separating inequalities ’A’ and equalities ’E’
eqnRow := {}; ineqnRow := {};
scan(numRow, i -> (if pivotCol#i >= n then

eqnRow = append(eqnRow, i)
else ineqnRow = append(ineqnRow, i);));

E := apply(eqnRow, i -> A#i);
E = apply(E, e -> e_{n..(n+d-1)});
A = apply(ineqnRow, i -> A#i);
A = apply(A, e -> e_(T | toList(n..(n+d-1))));
-- successive projections eliminate the variables ’T’.
if A =!= {} then scan(T, t -> (

D := fourierMotzkin(A, V, t);
A = D#0; V = D#1;));

-- output formating
A = apply(A, e -> primitive e);
if A === {} then A = map(ZZ^d, ZZ^0, 0)
else A = transpose matrix A;
if E === {} then E = map(ZZ^d, ZZ^0, 0)
else E = transpose matrix E;
(A, E));

If the input matrix H has no columns, it can be omitted. A sequence of
two matrices is returned, as above.

i93 : code(polarCone,Matrix)

o93 = -- polarCone.m2:199-200
polarCone(Matrix) := (Z) -> (

polarCone(Z, map(ZZ^(rank target Z), ZZ^0, 0)));

As a simple example, consider the permutahedron in R3 whose vertices
are the following six points.

i94 : H = transpose matrix{
{1,2,3},
{1,3,2},
{2,1,3},
{2,3,1},
{3,1,2},
{3,2,1}};

3 6
o94 : Matrix ZZ <--- ZZ

The inequality representation of the permutahedron is obtained by calling
polarCone on H: the facet normals of the polytope are the columns of the
matrix in the first argument of the output. The second argument is trivial
since our input is a polytope and hence there are is no non-trivial affine space
contained in it. If we call polarCone on the output, we will get back H as
expected.

i95 : P = polarCone H

o95 = (| 1 1 1 -1 -1 -5 |, 0)
| -1 1 -5 1 -1 1 |
| -1 -5 1 -1 1 1 |

o95 : Sequence

i96 : Q = polarCone P_0

Toric Hilbert Schemes 33

o96 = (| 1 1 2 2 3 3 |, 0)
| 2 3 1 3 1 2 |
| 3 2 3 1 2 1 |

o96 : Sequence

Appendix B. Minimal Presentation of Rings

Throughout this chapter, we have used on several occasions the simple, yet
useful subroutine removeRedundantVariables. In this appendix, we present
Macaulay 2 code for this routine, which is the main ingredient for finding
minimal presentations of quotients of polynomial rings. Our code for this
routine is a somewhat simplified, but less efficient version of a routine in the
Macaulay 2 package, minPres.m2, written by Amelia Taylor.

The routine removeRedundantVariables takes as input an ideal I in
a polynomial ring A. It returns a ring map F from A to itself that sends
redundant variables to polynomials in the non-redundant variables and sends
non-redundant variables to themselves. For example:

i97 : A = QQ[a..e];

i98 : I = ideal(a-b^2-1, b-c^2, c-d^2, a^2-e^2)

2 2 2 2 2
o98 = ideal (- b + a - 1, - c + b, - d + c, a - e)

o98 : Ideal of A

i99 : F = removeRedundantVariables I

8 4 2
o99 = map(A,A,{d + 1, d , d , d, e})

o99 : RingMap A <--- A

The non-redundant variables are d and e. The image of I under F gives the
elements in this smaller set of variables. We take the ideal of a Gröbner basis
of the image:

i100 : I1 = ideal gens gb(F I)

16 8 2
o100 = ideal(d + 2d - e + 1)

o100 : Ideal of A

The original ideal can be written in a cleaner way as
i101 : ideal compress (F.matrix - vars A) + I1

8 4 2 16 8 2
o101 = ideal (d - a + 1, d - b, d - c, d + 2d - e + 1)

o101 : Ideal of A

Let us now describe the Macaulay 2 code. The subroutine findRedundant
takes a polynomial f , and finds a variable xi in the ring of f such that
f = cxi+g for a non-zero constant c and a polynomial g that does not involve

34 M. Stillman, B. Sturmfels, and R. Thomas

the variable xi. If there is no such variable, null is returned. Otherwise, if
xi is the first such variable , the list {i, c−1g} is returned.

i102 : code findRedundant

o102 = -- minPres.m2:1-12
findRedundant=(f)->(

A := ring(f);
p := first entries contract(vars A,f);
i := position(p, g -> g != 0 and first degree g === 0);
if i === null then

null
else (

v := A_i;
c := f_v;
{i,(-1)*(c^(-1)*(f-c*v))}
)

)

The main function removeRedundantVariables requires an ideal in a
polynomial ring (not a quotient ring) as input. The internal routine findnext
finds the first entry of the (one row) matrix M that contains a redundancy.
This redundancy is used to modify the list xmap, which contains the images
of the redundant variables. The matrix M, and the list xmap are both updated,
and then we continue to look for more redundancies.

i103 : code removeRedundantVariables

o103 = -- minPres.m2:14-39
removeRedundantVariables = (I) -> (

A := ring I;
xmap := new MutableList from gens A;
M := gens I;
findnext := () -> (

p := null;
next := 0;
done := false;
ngens := numgens source M;
while next < ngens and not done do (

p = findRedundant(M_(0,next));
if p =!= null then

done = true
else next=next+1;

);
p);

p := findnext();
while p =!= null do (

xmap#(p#0) = p#1;
F1 := map(A,A,toList xmap);
F2 := map(A,A, F1 (F1.matrix));
xmap = new MutableList from first entries F2.matrix;
M = compress(F2 M);
p = findnext();
);

map(A,A,toList xmap));

Toric Hilbert Schemes 35

References

1. V.I. Arnold: A-graded algebras and continued fractions. Communications in
Pure and Applied Mathematics, 42:993–1000, 1989.

2. A Bigatti, R. La Scala, and L. Robbiano: Computing toric ideals. Journal of
Symbolic Computation, 27:351–365, 1999.

3. L. J. Billera, P. Filliman, and B. Sturmfels: Constructions and complexity of
secondary polytopes. Advances in Mathematics, 83:155–179, 1990.

4. W. Bruns and R. Koch: Normaliz, a program to compute normaliza-
tions of semigroups. available by anonymous ftp from ftp.mathematik.Uni-
Osnabrueck.DE/pub/osm/kommalg/software/.

5. D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, and Algorithms. An In-
troduction to Computational Algebraic Geometry and Commutative Algebra.
Springer-Verlag, New York, 1997.

6. T. de Jong: An algorithm for computing the integral closure. Journal of
Symbolic Computation, 26:273–277, 1998.

7. D. Eisenbud: Commutative Algebra with a View Toward Algebraic Geometry.
Springer-Verlag, New York, 1994.

8. I. M. Gel’fand, M. Kapranov, and A. Zelevinsky: Multidimensional Determi-
nants, Discriminants and Resultants. Birkhäuser, Boston, 1994.

9. J.E. Graver: On the foundations of linear and integer programming. Mathe-
matical Programming, 8:207–226, 1975.

10. S. Hoşten and D. Maclagan: The vertex ideal of a lattice. Preprint 2000.
11. S. Hoşten and J. Shapiro: Primary decomposition of lattice basis ideals. Journal

of Symbolic Computation, 29:625–639, 2000.
12. B. Huber and R.R. Thomas: Computing Gröbner fans of toric ideals. Ex-

perimental Mathematics, 9:321–331, 2000. Software, TiGERS, available at
http://www.math.washington.edu/˜thomas/programs.html.

13. E. Korkina, G. Post, and M. Roelofs: Classification of generalized A-graded
algebras with 3 generators. Bulletin de Sciences Mathématiques, 119:267–287,
1995.

14. D. Maclagan and R.R. Thomas: Combinatorics of the toric Hilbert scheme.
Discrete and Computational Geometry. To appear.

15. T. Mora and L. Robbiano: The Gröbner fan of an ideal. Journal of Symbolic
Computation, 6:183–208, 1998.

16. I. Peeva and M. Stillman: Local equations for the toric Hilbert scheme. Ad-
vances in Applied Mathematics. To appear.

17. I. Peeva and M. Stillman: Toric Hilbert schemes. Preprint 1999.
18. V. Reiner: The generalized Baues problem. In L. Billera, A. Björner, C. Greene,

R. Simion, and R. Stanley, editors: , New Perspectives in Algebraic Combina-
torics. Cambridge University Press, 1999.

19. F. Santos: A point configuration whose space of triangulations is disconnected.
Journal of the American Math. Soc., 13:611–637, 2000.

20. A. Schrijver: Theory of Linear and Integer Programming. Wiley-Interscience,
Chichester, 1986.

21. B. Sturmfels: The geometry of A-graded algebras. math.AG/9410032.
22. B. Sturmfels: Gröbner Bases and Convex Polytopes, volume 8. American Math-

ematical Society, University Lectures, 1996.
23. B. Sturmfels and R.R. Thomas: Variation of cost functions in integer program-

ming. Mathematical Programming, 77:357–387, 1997.

36 M. Stillman, B. Sturmfels, and R. Thomas

24. R.R. Thomas: Applications to integer programming. In D.A. Cox and B. Sturm-
fels, editors: , Applications of Computational Algebraic Geometry. AMS Pro-
ceedings of Symposia in Applied Mathematics, 1997.

25. G. Ziegler: Lectures on Polytopes, volume 152. Springer-Verlag, New York,
1995.

Index

backtracking algorithm
10

basis reduction 2
Baues graph 4
Baues problem 13
bistellar flip 13

coherent component 22

divisor at infinity 22

flip graph 8
flip search algorithm 10
Fourier-Motzkin elimina-

tion 10, 28

Graver basis 4
Graver degree 5
Graver fiber 5
Gröbner basis

– universal 4
Gröbner cone 10
Gröbner fan 21

Hilbert basis 25

ideal
– A-graded 1
– coherent 7
– torus isomorphism 7
integer programming

19

Lawrence lifting 5

matrix
– unimodular 13
minimal test set 19
minPres.m2 33

Normaliz 25
normalization 25

polarCone.m2 29
polyhedral subdivision

12

secondary polytope 13
Stanley-Reisner ideal

13

toric Hilbert scheme 1
toric ideal 1
triangulation 12
– regular 13

wall ideal 8
weight vectors
– equivalent 21
while 5

